精英家教网 > 高中数学 > 题目详情
设关于x的一元二次方程x2+2ax+b2=0.若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,则上述方程有实根的概率(  )
A、
1
4
B、
3
4
C、
1
2
D、
5
12
考点:古典概型及其概率计算公式
专题:概率与统计
分析:先求出基本事件的总数,利用一元二次方程有实数根的充要条件即可得出要求事件包括基本事件的总数,再利用古典概型的计算公式即可得出答案
解答: 解:先从0,1,2,3四个数中任取的一个数为a,再从0,1,2三个数中任取的一个数为b,共有4×3=12种选法.
其中能使关于x的一元二次方程x2+2ax+b2=0有实数根的a、b必须满足△=4a2-4b2≥0,即|a|≥|b|,
共有以下9种选法:(0,0);(1,0);(1,1);(2,0);(2,1);(2,2);(3,0);(3,1);(3,2).
因此所求的概率P=
9
12
=
3
4

故选;B.
点评:本题考查了概率公式与一元二次方程的判别式,熟练掌握一元二次方程有实数根的充要条件及古典概型的计算公式是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点A(0,1)是椭圆x2+4y2=4上的一点,P点是椭圆上的动点,则弦AP长度的最大值为(  )
A、
2
3
3
B、2
C、
4
3
3
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,若输出k=2,则输入x的取值范围是(  )
A、(28,57]
B、[28,57)
C、(28,57)
D、[28,57]

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an},a7-2a4=-1,且a3=0,则公差d=(  )
A、-2
B、-
1
2
C、
1
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=ln(4+3x-x2)的单调递增区间是(  )
A、(-∞,
3
2
]
B、[
3
2
,+∞)
C、(-1,
3
2
]
D、[
3
2
,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=x+
3
2
被曲线y=
1
2
x2截得线段的中点到原点的距离为(  )
A、29
B、
29
C、
29
4
D、
29
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC的AB边长为2,P,Q分别是AC,BC中点,记
AB
AP
+
BA
BQ
=m,
AB
AQ
+
BA
BP
=n,则(  )
A、m=2,n=4
B、m=3,n=1
C、m=2,n=6
D、m=3n,但m,n的值不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
x2
+4(x≠0),各项均为正数的数列{an}中a1=1,
1
an+12
=f(an),(n∈N*).
(1)求数列{an}的通项公式;
(2)在数列{bn}中,对任意的正整数n,bn
(3n-1)an2+n
an2
=1都成立,设Sn为数列{bn}的前n项和.试比较Sn
1
2
的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,若a5=6,a8=15,求公差d及a14

查看答案和解析>>

同步练习册答案