精英家教网 > 高中数学 > 题目详情
4.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且过焦点与长轴垂直的弦长为1,求椭圆的方程.

分析 根据椭圆的离心率可以得到$\frac{\sqrt{{a}^{2}-{b}^{2}}}{a}=\frac{\sqrt{3}}{2}$①,过焦点的直线可表示为x=$\sqrt{{a}^{2}-{b}^{2}}$,所以根据过焦点与长轴垂直的弦长为1得到$\frac{2{b}^{2}}{a}=1$②,从而解①②形成的方程组即可得出a,b,从而写出椭圆的方程.

解答 解:根据已知条件得:
$\left\{\begin{array}{l}{\frac{\sqrt{{a}^{2}-{b}^{2}}}{a}=\frac{\sqrt{3}}{2}}\\{\frac{2{b}^{2}}{a}=1}\end{array}\right.$;
解得a=2,b=1;
椭圆方程为$\frac{{x}^{2}}{4}+{y}^{2}=1$.

点评 考查椭圆的标准方程,椭圆离心率的概念,椭圆焦点的概念,以及a2=b2+c2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,在正三棱柱ABC-A1B1C1中,AA1=AB=2,D为CC1的中点.
(Ⅰ)求证:BC1⊥平面B1CD;
(Ⅱ)求二面角B-B1D-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.一个楔子形状几何体的直观图如图所示,其底面ABCD为一个矩形,其中AB=6,AD=4,顶部线段EF∥平面ABCD,棱EA=ED=FB=FC=6$\sqrt{2}$,二面角F-BC-A的余弦值为$\frac{\sqrt{17}}{17}$.设M,N分别是AD,BC的中点.
(I)证明:平面EFNM⊥平面ABCD;
(Ⅱ)求直线BF与平面EFCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若对任意x∈[1,2],不等式4x+a•2-x+1-a2<0(a∈R)恒成立,则a的取值范围是(  )
A.a>$\frac{5}{2}$或a<-2B.a>$\frac{17}{4}$或a<-4C.a>$\frac{17}{4}$或a<-2D.a>$\frac{5}{2}$或a<-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ex
(1)证明:当0≤x<1时,ex≤$\frac{1}{1-x}$;
(2)若函数h(x)=|1-f(-x)|+af(x)-3(a>0是常数)在区间[-ln3,ln3]上有零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=sin($\frac{π}{2}$+x)tanx+$\frac{cos(2π-x)tan(-x+\frac{π}{2})}{cot(-π+x)}$.
(1)化简f(x);
(2)若x是三角形的一个内角,且f(x)=$\frac{1}{5}$,求tanx;
(3)若x是三角形的一个内角,且f($\frac{π}{6}$-x)=$\frac{1}{3}$,求f($\frac{5π}{6}$+x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示为一简单组合体,其底面ABCD为直角梯形,AD⊥CD,AB∥CD,PD⊥平面ABCD,PD∥EC,PD=CD=2AD=2AB=2,CE=1
(Ⅰ)求证:BC⊥平面PBD;
(Ⅱ)若F为PC上的一点,试确定F的位置使得BF∥平面PAD;
(Ⅲ)求E到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}满足:a1=1,3a${\;}_{n+1}^{2}$+3a${\;}_{n}^{2}$-10anan+1=3,an<an+1(n∈N+).
(Ⅰ)证明:{3an+1-an}是等比数列;
(Ⅱ)设数列{an}的前n项和为Sn,求证:$\frac{{n}^{2}}{{S}_{n}}$≤$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$<$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.将边长为2的正方形ABCD沿对角线BD折叠,使得平面ABD⊥平面CBD,AE⊥平面ABD,且AE=$\sqrt{2}$.
(1)证明:BD⊥CE;
(2)求AE与平面BDE所成角的大小;
(3)直线BE上是否存在一点M,使得CM∥平面ADE,若存在,求点M的位置,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案