精英家教网 > 高中数学 > 题目详情
16.如图,椭圆$\frac{x^2}{16}+\frac{y^2}{9}=1$的左、右焦点分别为F1、F2,一条直线l经过F1与椭圆交于A,B两点,若直线l的倾斜角为45°,求△ABF2的面积.

分析 求出直线l的方程,与椭圆方程联立,消去x,由根与系数的关系求出|y1-y2|的值,即可计算△ABF2的面积S.

解答 解:椭圆$\frac{x^2}{16}+\frac{y^2}{9}=1$的左、右焦点分别为F1(-$\sqrt{7}$,0),F2($\sqrt{7}$,0),
直线l的倾斜角为45°,直线的斜率是k=tan45°=1,且过焦点F1(-$\sqrt{7}$,0);
∴直线方程为y=x+$\sqrt{7}$;
∴$\left\{\begin{array}{l}{y=x+\sqrt{7}}\\{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{9}=1}\end{array}\right.$,
消去x,得9(y-$\sqrt{7}$)2+16y2=144,
整理得25y2-18$\sqrt{7}$y-81=0,y1+y2=$\frac{18\sqrt{7}}{25}$,y1y2=$\frac{-81}{25}$;
∴|y1-y2|=$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\sqrt{(\frac{18\sqrt{7}}{25})^{2}+4×\frac{81}{25}}$=$\frac{72\sqrt{2}}{25}$;
∴△ABF2的面积S=$\frac{1}{2}$|F1F2|•|y1-y2|=$\frac{1}{2}$×2$\sqrt{7}$×$\frac{72\sqrt{2}}{25}$=$\frac{72\sqrt{14}}{25}$.

点评 本题考查了直线与椭圆的方程的应用问题,也考查了椭圆的定义的应用问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.将函数y=cos(2x-$\frac{π}{6}$)的图象向左平移$\frac{1}{4}$个周期后,所得图象对应的解析式(  )
A.y=cos(2x+$\frac{π}{12}$)B.y=cos(2x+$\frac{π}{3}$)C.y=cos(2x-$\frac{2π}{3}$)D.y=cos(2x-$\frac{5π}{12}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知命题p:x(6-x)≥-16,命题q:x2+2x+1-m2≤0(m<0),若¬p是¬q的必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设2a=5b=m,且$\frac{1}{a}$+$\frac{1}{b}$=1,则m等于(  )
A.$\sqrt{10}$B.10C.20D.100

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,AB是圆O的直径,弦CE交AB于D,CD=4$\sqrt{2}$,DE=$\sqrt{2}$,BD=2.
(I)求圆O的半径R;
(Ⅱ)求线段BE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=ax3+bx2+b2x,在x=1处有极大值$\frac{1}{3}$,则b=(  )
A.-1B.$\frac{1}{2}$C.$\frac{1}{2}$或-1D.-$\frac{5}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列an=1+$\frac{1}{2}+\frac{1}{3}$+…+$\frac{1}{n}$(n∈N*
求证:a${\;}_{n}^{2}$+$\frac{7}{4}>$2(a1$+\frac{{a}_{2}}{2}$$+\frac{{a}_{3}}{3}$$+…+\frac{{a}_{n}}{n}$)(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x3-3ax+b(a≠0)的图象在点(2,f(2))处的切线方程为y=8.
(1)求实数a,b的值;
(2)求函数f(x)的单调区间;
(3)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(I)求证:$\sqrt{5}$+$\sqrt{7}$<2$\sqrt{6}$;
(Ⅱ)已知a>0,b>0且a+b>2,求证:$\frac{1+a}{b}$,$\frac{1+b}{a}$中至少有一个小于2.

查看答案和解析>>

同步练习册答案