精英家教网 > 高中数学 > 题目详情
7.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(λ,-6),$\overrightarrow{a}$∥$\overrightarrow{b}$,则λ=(  )
A.-3B.-2C.2D.18

分析 利用向量的共线,列出方程求解即可.

解答 解:向量$\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(λ,-6),$\overrightarrow{a}$∥$\overrightarrow{b}$,
可得:3λ=-6,解得λ=-2.
故选:B.

点评 本题考查向量共线的充要条件的应用,考查计算能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.面对全球范围内日益严峻的能源形势与环保压力,环保与低碳成为今后汽车发展的一大趋势,越来越多的消费者对新能源汽车表示出更多的关注,某研究机构从汽车市场上随机抽取N辆纯电动汽车调查其续航里程(单次充电后能行驶的最大里程),被调查汽车的续航里程全部介于100公里和450公里之间,根据调查数据形成了如图所示频率分布表及频率分布直方图.
频率分布表
分组  频数 频率
[100,150) 1 0.05
[150,200) 3 0.15
[200,250) x 0.1
[250,300) 6 0.3
[300,350) 40.2 
[350,400) 3 y
[400,450] 1 0.05
 合计 N 1
(1)试确定频率分布表中x,y,N的值,并补全频率分布直方图;
(2)若从续航里程在[200,250)及[350,400)的车辆中随机抽取2辆车,求两辆车续航里程都在[350,400)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=2$\sqrt{3}$sinxcosx+2cos2x-1.
(1)求f(x)的单调递减区间;
(2)若f(α+$\frac{π}{6}$)=$\frac{\sqrt{3}}{2}$f(α-$\frac{π}{12}$),且f(α)=f(β),角α,β的终边不共线,求tan(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的表面积为(  )
A.$\frac{3}{2}π$B.πC.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若坐标原点到抛物线x=m2y2的准线的距离为2,则m=±$\frac{\sqrt{2}}{4}$;焦点坐标为(2,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.画出如图所示放置的直角三角形的直观图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设方程$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{m+3}$═1表示双曲线,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=$\sqrt{3}$,($\overrightarrow{a}$+2$\overrightarrow{b}$)•($\overrightarrow{b}$-3$\overrightarrow{a}$)=9.
(1)求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ;
(2)在△ABC中,若$\overrightarrow{AB}$=a,$\overrightarrow{AC}$=b,求BC边的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,AC=4$\sqrt{3},∠ABC={60°}$,D为BC边上一点,BD=AB,设B,C到直线AD的距离分别为d1和d2,则d1+d2的最大值为(  )
A.2B.4C.$4\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

同步练习册答案