分析 (1)利用二倍角公式以及两角和与差的三角函数化简函数的解析式,利用正弦函数的单调性求解即可.
(2)由题意可得tan2α的值,2sin(2α+$\frac{π}{6}$)=2sin(2β+$\frac{π}{6}$),由此求得 α+β 的值,利用角的变换可得 tan(α-β )的值.
解答 解:(1)∵f(x)=2$\sqrt{3}$sinxcosx+2cos2x-1=$\sqrt{3}$sin2x+cos2x=2sin(2x+$\frac{π}{6}$),
由2kπ+$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$(k∈Z),
求得kπ+$\frac{π}{6}$≤x≤kπ+$\frac{2π}{3}$(k∈Z),
∴f(x)的单调递减区间为[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z).
(2)f(α+$\frac{π}{6}$)=$\frac{\sqrt{3}}{2}$f(α-$\frac{π}{12}$),2sin(2α+$\frac{π}{2}$)=$\sqrt{3}$sin(2α),
即2cos2α=$\sqrt{3}$sin2α,tan2α=$\frac{2\sqrt{3}}{3}$.
若角α,β的终边不共线,且f(α)=f(β),
∴2sin(2α+$\frac{π}{6}$)=2sin(2β+$\frac{π}{6}$),
∴2α+$\frac{π}{6}$+2β+$\frac{π}{6}$=2kπ+π,k∈z,∴α+β=kπ+$\frac{π}{3}$,
故 tan(α+β )=$\sqrt{3}$.
tan(α-β )=tan[2α-(α+β )]
=$\frac{tan2α-tan(α+β)}{1+tan2αtan(α+β)}$=$\frac{\frac{2\sqrt{3}}{3}-\sqrt{3}}{1+\frac{2\sqrt{3}}{3}×\sqrt{3}}$
=-$\frac{\sqrt{3}}{9}$.
点评 本题主要考查利用三角恒等变换进行化简求值,复合三角函数的单调性与对称性,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{17π}{4}$ | B. | 4π | C. | $\frac{15π}{4}$ | D. | $\frac{7π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | -2 | C. | 2 | D. | 18 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com