精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=2$\sqrt{3}$sinxcosx+2cos2x-1.
(1)求f(x)的单调递减区间;
(2)若f(α+$\frac{π}{6}$)=$\frac{\sqrt{3}}{2}$f(α-$\frac{π}{12}$),且f(α)=f(β),角α,β的终边不共线,求tan(α-β)的值.

分析 (1)利用二倍角公式以及两角和与差的三角函数化简函数的解析式,利用正弦函数的单调性求解即可.
(2)由题意可得tan2α的值,2sin(2α+$\frac{π}{6}$)=2sin(2β+$\frac{π}{6}$),由此求得 α+β 的值,利用角的变换可得 tan(α-β )的值.

解答 解:(1)∵f(x)=2$\sqrt{3}$sinxcosx+2cos2x-1=$\sqrt{3}$sin2x+cos2x=2sin(2x+$\frac{π}{6}$),
由2kπ+$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$(k∈Z),
求得kπ+$\frac{π}{6}$≤x≤kπ+$\frac{2π}{3}$(k∈Z),
∴f(x)的单调递减区间为[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z).
(2)f(α+$\frac{π}{6}$)=$\frac{\sqrt{3}}{2}$f(α-$\frac{π}{12}$),2sin(2α+$\frac{π}{2}$)=$\sqrt{3}$sin(2α),
即2cos2α=$\sqrt{3}$sin2α,tan2α=$\frac{2\sqrt{3}}{3}$.
若角α,β的终边不共线,且f(α)=f(β),
∴2sin(2α+$\frac{π}{6}$)=2sin(2β+$\frac{π}{6}$),
∴2α+$\frac{π}{6}$+2β+$\frac{π}{6}$=2kπ+π,k∈z,∴α+β=kπ+$\frac{π}{3}$,
故 tan(α+β )=$\sqrt{3}$.
 tan(α-β )=tan[2α-(α+β )]
=$\frac{tan2α-tan(α+β)}{1+tan2αtan(α+β)}$=$\frac{\frac{2\sqrt{3}}{3}-\sqrt{3}}{1+\frac{2\sqrt{3}}{3}×\sqrt{3}}$
=-$\frac{\sqrt{3}}{9}$.

点评 本题主要考查利用三角恒等变换进行化简求值,复合三角函数的单调性与对称性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系xOy中,倾斜角为α的直线l过点M(-2,-4),以原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρsin2θ=2cosθ.
(1)写出直线l的参数方程(α为常数)和曲线C的直角坐标方程;
(2)若直线l与C交于A、B两点,且|MA|•|MB|=40,求倾斜角α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若向量$\overrightarrow{a}$、$\overrightarrow{b}$的夹角为150°,|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=4,则|2$\overrightarrow{a}$+$\overrightarrow{b}$|=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.统计假设H0:P(AB)=P(A)P(B)成立时,以下判断:①P($\overline{A}$B)=P($\overline{A}$)•P(B),②P(A$\overline{B}$)=P(A)•P($\overline{B}$),③P($\overline{A}$•$\overline{B}$)=P($\overline{A}$)•P($\overline{B}$),其中正确的命题个数有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,某几何体的三视图是三个半径相等的圆,且每个圆中的两条半径互相垂直,若该几何体的体积是$\frac{7π}{6}$,则它的表面积是(  )
A.$\frac{17π}{4}$B.C.$\frac{15π}{4}$D.$\frac{7π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.“x=-3”是“x2+3x=0”的(  )
A.充分必要条件B.必要不充分条件
C.充分不必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某三棱锥的三视图如图所示,则该三棱锥的最长棱的棱长为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(λ,-6),$\overrightarrow{a}$∥$\overrightarrow{b}$,则λ=(  )
A.-3B.-2C.2D.18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数f(x)=x3-3x+a在区间[0,2]上有最大值m和最小值n,则m-n等于(  )
A.-2B.0C.2D.4

查看答案和解析>>

同步练习册答案