精英家教网 > 高中数学 > 题目详情
17.若函数f(x)=x3-3x+a在区间[0,2]上有最大值m和最小值n,则m-n等于(  )
A.-2B.0C.2D.4

分析 求出f′(x)=3x2-3,由f′(x)=3x2-3=0,得x=±1,由x=-1∉[0,2],x=1∈[0,2],求出f(0)=a,f(1)=-2+a,f(2)=2+a,从而得到m=2+a,n=-2+a,由此能求出m-n的值.

解答 解:∵函数f(x)=x3-3x+a,
∴f′(x)=3x2-3,
由f′(x)=3x2-3=0,得x=±1,
x=-1∉[0,2],x=1∈[0,2],
∵f(0)=a,f(1)=1-3+a=-2+a,f(2)=8-6+a=2+a,
函数f(x)=x3-3x+a在区间[0,2]上有最大值m和最小值n,
∴m=2+a,n=-2+a,
∴m-n=4.
故选:D.

点评 本题考查函数的最大值与最小值之差的求法,考查导数、最值等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=2$\sqrt{3}$sinxcosx+2cos2x-1.
(1)求f(x)的单调递减区间;
(2)若f(α+$\frac{π}{6}$)=$\frac{\sqrt{3}}{2}$f(α-$\frac{π}{12}$),且f(α)=f(β),角α,β的终边不共线,求tan(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设方程$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{m+3}$═1表示双曲线,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=$\sqrt{3}$,($\overrightarrow{a}$+2$\overrightarrow{b}$)•($\overrightarrow{b}$-3$\overrightarrow{a}$)=9.
(1)求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ;
(2)在△ABC中,若$\overrightarrow{AB}$=a,$\overrightarrow{AC}$=b,求BC边的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知圆C:x2+(y-$\frac{\sqrt{3}}{2}$)2=$\frac{27}{4}$经过椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点F1、F2,点N为圆C与椭圆E的一个交点,且直线F1N过圆心C.
(1)求椭圆E的方程;
(2)直线l与椭圆E交于A、B两点,点M的坐标为(3,0),若$\overrightarrow{MA}$•$\overrightarrow{MB}$=-3,求证:直线l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)已知复数z=1+i,ω=$\frac{{z}^{2}-3z+6}{z+1}$(i为虚数单位),设复数ω在复平面内对应的向量为$\overrightarrow{OA}$,把坐标为(0,$\sqrt{2}$)对应的向量$\overrightarrow{OB}$按照逆时针方向旋转角θ到向量$\overrightarrow{OA}$的位置,求θ的最小值;
(2)若($\frac{1}{\root{3}{x}}$+2$\sqrt{x}$)n的二项展开式中,各项的二项式系数之和是1024,求系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.点(2,0)关于直线y=-x-4的对称点是(  )
A.(-4,-6)B.(-6,-4)C.(-5,-7)D.(-7,-5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,AC=4$\sqrt{3},∠ABC={60°}$,D为BC边上一点,BD=AB,设B,C到直线AD的距离分别为d1和d2,则d1+d2的最大值为(  )
A.2B.4C.$4\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=3sin(ωx+φ)(ω>0,0<φ<π),直线x=$\frac{π}{4}$和x=$\frac{5π}{4}$是f(x)相邻的两条对称轴,则f(x)的解析式为(  )
A.f(x)=3sin(x+$\frac{π}{4}$)B.f(x)=3sin(2x$+\frac{π}{4}$)C.f(x)=3sin(x$+\frac{3π}{4}$)D.f(x)=3sin(2x$+\frac{3π}{4}$)

查看答案和解析>>

同步练习册答案