| A. | -2 | B. | 0 | C. | 2 | D. | 4 |
分析 求出f′(x)=3x2-3,由f′(x)=3x2-3=0,得x=±1,由x=-1∉[0,2],x=1∈[0,2],求出f(0)=a,f(1)=-2+a,f(2)=2+a,从而得到m=2+a,n=-2+a,由此能求出m-n的值.
解答 解:∵函数f(x)=x3-3x+a,
∴f′(x)=3x2-3,
由f′(x)=3x2-3=0,得x=±1,
x=-1∉[0,2],x=1∈[0,2],
∵f(0)=a,f(1)=1-3+a=-2+a,f(2)=8-6+a=2+a,
函数f(x)=x3-3x+a在区间[0,2]上有最大值m和最小值n,
∴m=2+a,n=-2+a,
∴m-n=4.
故选:D.
点评 本题考查函数的最大值与最小值之差的求法,考查导数、最值等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | $4\sqrt{3}$ | D. | $2\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=3sin(x+$\frac{π}{4}$) | B. | f(x)=3sin(2x$+\frac{π}{4}$) | C. | f(x)=3sin(x$+\frac{3π}{4}$) | D. | f(x)=3sin(2x$+\frac{3π}{4}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com