精英家教网 > 高中数学 > 题目详情
20.在三棱锥D-ABC,AB=BC=CD=DA=8,∠ADC=∠ABC=120°,M、O分别为棱BC,AC的中点,DM=4$\sqrt{2}$.
(1)求证:平面ABC⊥平面MDO;
(2)求点M到平面ABD的距离.

分析 (I)证明OD⊥OM.OD⊥AC.推出OD⊥平面ABC,然后证明平面ABC⊥平面MDO.
(Ⅱ)利用VM-ABD=VD-MAB,求出相关几何体的底面面积,以及高,求解点M到平面ABD的距离.

解答 解:(I)证明:由题意:OM=OD=4,
∵$DM=4\sqrt{2}$,∴∠DOM=90°,即OD⊥OM.
又∵在△ACD中,AD=CD,O为AC的中点,∴OD⊥AC.
∵OM∩AC=O,∴OD⊥平面ABC,
又∵OD?平面MDO,∴平面ABC⊥平面MDO.…(6分)
(Ⅱ)由(I)知OD⊥平面ABC,OD=4
△ABM的面积为${S_{△ABM}}=\frac{1}{2}BA×BM×sin{120°}=\frac{1}{2}×8×4×\frac{{\sqrt{3}}}{2}=8\sqrt{3}$.
又∵在Rt△BOD中,OB=OD=4,得$BD=4\sqrt{2}$,AB=AD=8,
∴${S_{△ABD}}=\frac{1}{2}×4\sqrt{2}×\sqrt{64-8}=8\sqrt{7}$.
∵VM-ABD=VD-MAB,即$\frac{1}{3}{S_{△ABD}}•h=\frac{1}{3}{S_{MAB}}•OD$
∴$h=\frac{{{S_{△MAB}}•OD}}{{{S_{△ABD}}}}=\frac{{4\sqrt{21}}}{7}$,
∴点M到平面ABD的距离为$\frac{{4\sqrt{21}}}{7}$.…(12分)

点评 本题考查空间点线面距离公式的应用,等体积法的应用,平面与平面垂直的判定定理的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知直线l1的方程为x-y-3=0,l1为抛物线x2=ay(a>0)的准线,抛物线上一动点P到l1,l2距离之和的最小值为2$\sqrt{2}$,则实数a的值为(  )
A.lB.2C.4D.28

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若一组数据x1,x2,x3,…,xn的平均数为2,方差为3,2x1+5,2x2+5,2x3+5,…,2xn+5的平均数和方差分别是(  )
A.9,11B.4,11C.9,12D.4,17

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.数列{an}中,an=$\frac{1}{{{a_{n-1}}}}$+1,若a1=1,则a2=2;若a4=4,则a2=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=exsinx,则f′($\frac{π}{2}$)=${e}^{\frac{π}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知命题p:a-|x|-$\frac{1}{a}$>0(a>1),命题q:b${\;}^{l{g}^{{x}^{2}}}$>1(0<b<1),那么q是p的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知i为虚数单位,(1-2i)•z=i3.则复数z在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x||x-1|≤2,x∈Z},B={x|y=log2(x+1),x∈R},则A∩B=(  )
A.{-1,0,1,2,3}B.{0,1,2,3}C.{1,2,3}D.{-1,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.先化简:$\sqrt{x+3}$-2$\sqrt{x}$-$\frac{1}{\sqrt{x+3}+\sqrt{x}}$,再计算当x=1时的值.

查看答案和解析>>

同步练习册答案