精英家教网 > 高中数学 > 题目详情
9.已知集合A={x|x=3n+2,x∈N},B={7,9,11,12,14}则集合A∩B中的元素个数为(  )
A.5B.4C.3D.2

分析 根据集合的基本运算进行求解即可.

解答 解:A={x|x=3n+2,x∈N}={2,5,8,11,14…},
B={7,9,11,12,14},
则集合A∩B={11,14},
故对应的元素个数为2个,
故选:D

点评 本题主要考查集合的基本运算,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设a=sin33°,b=cos58°,c=tan34°,则(  )
A.a>b>cB.b>c>aC.c>b>aD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=|x+2|在(-∞,-4)上单调性是单调递减.(填“递增”或“递减”)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,角A、B、C所对的边分别为a、b、c,B=45°,a=4,且三角形面积为$16\sqrt{2}$,则c的值为(  )
A.$4\sqrt{2}$B.48C.$8\sqrt{2}$D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在等比数列{an}中,若a1=2,a2+a5=0,{an}的n项和为Sn,则S2015+S2016=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ax3+cx+d(a≠0)在R上满足 f(-x)=-f(x),当x=1时f(x)取得极值-2.
(1)求f(x)的单调区间和极大值;
(2)证明:对任意x1,x2∈(-1,1),不等式|f(x1)-f(x2)|<4恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知定义在R上的函数f(x)=|x+1|-|x-2|的最小值为a.
(1)求a的值;
(2)若实数p,q,r满足p-2q+3r=a,求p2+q2+r2的最小值及取得最小值时对应的p,q,r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知锐角α、β满足cosα=$\frac{3}{5}$,cos(α+β)=-$\frac{5}{13}$,则cosβ=(  )
A.$\frac{56}{65}$B.$\frac{33}{65}$C.$-\frac{56}{65}$D.$-\frac{33}{65}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知a,b,c为直角三角形的三边,其中c是斜边,若$\frac{1}{{a}^{2}}$+$\frac{4}{{b}^{2}}$+$\frac{t}{{c}^{2}}$≥0恒成立,则实数t的取值范围是[-9,+∞).

查看答案和解析>>

同步练习册答案