精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=ax3+cx+d(a≠0)在R上满足 f(-x)=-f(x),当x=1时f(x)取得极值-2.
(1)求f(x)的单调区间和极大值;
(2)证明:对任意x1,x2∈(-1,1),不等式|f(x1)-f(x2)|<4恒成立.

分析 (1)由f(-x)=-f(x)(x∈R)得d=0,求得f(x)的导数,由题意可得f′(1)=0,f(1)=-2,解得a=1,c=-3,求得f(x)的导数,令导数大于0,可得增区间,令导数小于0,可得减区间,进而得到极大值;
(2)求出f(x)在[-1,1]的最大值M和最小值m,对任意的x1,x2∈(-1,1),恒有|f(x1)-f(x2)|<M-m,即可得证.

解答 解:(1)由f(-x)=-f(x)(x∈R)得d=0,
∴f(x)=ax3+cx,f′(x)=ax2+c.
由题设f(1)=-2为f(x)的极值,必有f′(1)=0,
∴$\left\{\begin{array}{l}a+c=0\\ 3a+c=0\end{array}\right.$解得a=1,c=-3,
∴f′(x)=3x2-3=3(x-1)(x+1)
从而f′(1)=f′(-1)=0.
当x∈(-∞,-1)时,f′(x)>0,则f(x)在(-∞,-1)上是增函数;
在x∈(-1,1)时,f′(x)<0,则f(x)在(-1,1)上是减函数,
当x∈(1,+∞)时,f′(x)>0,则f(x)在(1,+∞)上是增函数.
∴f(-1)=2为极大值.
(2)证明:由(1)知,f(x)=x3-3x在[-1,1]上是减函数,
且f(x)在[-1,1]上的最大值M=f(-1)=2,
在[-1,1]上的最小值m=f(1)=-2.
对任意的x1,x2∈(-1,1),恒有|f(x1)-f(x2)|<M-m=2-(-2)=4.

点评 本题考查函数的奇偶性的运用,考查导数的运用:求单调区间和极值、最值,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设⊙E与⊙F相离,过E向⊙F作切线交⊙E于A、B,过F向⊙E作切线交⊙F于C、D,求证:AB=CD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知定义在R上的偶函数,f(x)在x>0时,f(x)=ex+lnx,若f(a)<f(a-1),则a的取值范围是(  )
A.(-∞,1)B.(-∞,$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,过点P(4,0)作倾斜角为a的直线l,以原点O为极点,x轴非负半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρ=1,将曲线C1上各点的横坐标伸长为原来的5倍,纵坐标伸长为原来的3倍,得到曲线C2,直线l与曲线C2交于不同的两点M,N.
(1)求直线l的参数方程及曲线C2的普通方程.
(2)求$\sqrt{\frac{1}{|PM|•|PN|}}$的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x|x=3n+2,x∈N},B={7,9,11,12,14}则集合A∩B中的元素个数为(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在锐角三角形ABC中,BC=2,AB=3,则AC的取值范围是(  )
A.(1,$\sqrt{5}$)B.($\sqrt{5}$,$\sqrt{13}$)C.($\sqrt{13}$,5)D.($\sqrt{5}$,5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若$\overrightarrow a$=(0,3),$\overrightarrow b$=($\sqrt{3}$,1),$\overrightarrow{c}$=3$\overrightarrow{a}$+5$\overrightarrow{b}$,$\overrightarrow{d}$=m$\overrightarrow{a}$-5$\overrightarrow{b}$,
(1)试问m为何值时,$\overrightarrow c$与$\overrightarrow{d}$互相平行;
(2)试问m为何值时,$\overrightarrow c$与$\overrightarrow{d}$互相垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=f(x)在区间[-2,2]上的图象是连续的,且方程f(x)=0在(-2,2)上至少有一个实根,则f(-2)•f(2)的值(  )
A.大于0B.小于0C.等于0D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知x,y满足约束条件$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}≤4}\\{x-2y-2≤0}\\{2x-y+2≥0}\end{array}\right.$,则z=3x+y的最大值为(  )
A.2$\sqrt{10}$B.$\sqrt{5}$C.2D.2$\sqrt{5}$

查看答案和解析>>

同步练习册答案