精英家教网 > 高中数学 > 题目详情
17.已知数列{an}的前n项和为Sn,其中a1=1,an+1=2Sn+1(n∈N*),若数列{bn}满足:bn=log3an
(1)求数列{bn}的通项公式;
(2)令cn=$\frac{1}{{b}_{n+1}{b}_{n+3}}$,求数列{cn}的前n项和Tn

分析 (1)通过an+1=2Sn+1与an+2=2Sn+1+1作差、整理得an+2=3an+1,进而an=3n-1,从而利用对数的性质可知bn=n-1;
(2)通过(1)、裂项可知cn=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),进而并项相加即得结论.

解答 解:(1)∵an+1=2Sn+1,
∴an+2=2Sn+1+1,
两式相减得:an+2-an+1=2Sn+1+1-(2Sn+1)=2an+1
∴an+2=3an+1
又∵a2=2S1+1=3=3a1满足上式,
∴数列{an}是以1为首项、3为公比的等比数列,
∴an=3n-1
∴bn=log3an=log33n-1=n-1,
∴数列{bn}的通项公式bn=n-1;
(2)由(1)可知cn=$\frac{1}{{b}_{n+1}{b}_{n+3}}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),
∴Tn=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+…+$\frac{1}{n-1}$-$\frac{1}{n+1}$+$\frac{1}{n}$-$\frac{1}{n+2}$)
=$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)
=$\frac{3}{4}$-$\frac{1}{2}$($\frac{1}{n+1}$+$\frac{1}{n+2}$).

点评 本题考查数列的通项及前n项和,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.极坐标曲线C的极坐标方程为ρ2-4$\sqrt{2}$ρcos(θ-$\frac{π}{4}$)+7=0.设P(x,y)是曲线C上的动点,求t=(x+1)(y+1)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知(x+1)n=a0+a1(x-1)+a2(x-1)2+…+an(x-1)n,(其中n∈N*).
(1)求a0及sn=a1+a2+…+an
(2)试比较sn与(n-2)•2n+2n2的大小,并用数学归纳法给出证明过程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,某地一天从6时到14时的温度变化曲线近似满足函数f(x)=Asin(ωx+φ)+b,(A>0,ω>0,0<φ<π).
(1)写出这段曲线的函数f(x)的解析式;
(2)当x∈R时,若函数g(x)=f(x+m)是偶函数,求实数|m|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,过圆E外一点A作一条直线与圆E交B,C两点,且AB=$\frac{1}{3}$AC,作直线AF与圆E相切于点F,连接EF交BC于点D,己知圆E的半径为2,∠EBC=$\frac{π}{6}$.
(1)求AF的长;
(2)求证:AD=3ED.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.5+12i的平方根3+2i或-3-2i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.一半径为6米的水轮如图,水轮圆心O距离水面3米,已知水轮每分钟转动4圈,水轮上点P从水中浮现时开始到其第一次达到最高点的用时为5秒.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.有甲、乙、丙、丁四位同学参加比赛,其中只有一位获奖.关于获奖,四人如此说:甲说“是乙或丙获奖”,乙说“甲、丙都未获奖”,丙说“我获奖了”,丁说“是乙获奖”.但这四个人只有两人说得正确,请分析获奖同学是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若函数f(x)=sinnxsinnx+cosnxcosnx-cosn2x,对任意x∈R都使f(x)为常数,则正整数n为3.

查看答案和解析>>

同步练习册答案