分析 (1)将直线l变形,得到关于m的一次方程,得到关于x,y的方程组,解出可得直线l恒过定点;
(2)求出直线l的方程,联立直线和圆的方程,代入弦长公式即可.
解答 解:(1)直线l:(2m+1)x+(m+1)y=7m+4
可化为m(2x+y-7)+(x+y-4)=0,
令 $\left\{\begin{array}{l}{2x+y-7=0}\\{x+y-4=0}\end{array}\right.$,解得 $\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$,
∴直线l恒过定点A(3,1);
(2)m=0时,直线l:x+y-4=0,
联立$\left\{\begin{array}{l}{x+y-4=0}\\{{(x-1)}^{2}{+(y-2)}^{2}=25}\end{array}\right.$,
消去y得:x2-3x-10=0,
解得:x=5或x=-2,
故弦长l=$\sqrt{1{+k}^{2}}$|x1-x2|=7$\sqrt{2}$.
点评 题考查直线恒过定点,考查弦长的计算,解题的关键是掌握圆的特殊性,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{9}{4}$ | B. | $\frac{2}{3}$ | C. | $\frac{5}{3}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 内切 | B. | 相交 | C. | 外切 | D. | 相离 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若α∥β,m?α,n?β,则m∥n | |
| B. | 若m,n?α,m∥β,n∥β,则α∥β | |
| C. | m,n是异面直线,若m∥α,m∥β,n∥α,n∥β,则α∥β | |
| D. | 若α∥β,m∥α,则m∥β |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com