精英家教网 > 高中数学 > 题目详情
6.已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是(  )
A.内切B.相交C.外切D.相离

分析 根据直线与圆相交的弦长公式,求出a的值,结合两圆的位置关系进行判断即可.

解答 解:圆的标准方程为M:x2+(y-a)2=a2 (a>0),
则圆心为(0,a),半径R=a,
圆心到直线x+y=0的距离d=$\frac{a}{\sqrt{2}}$,
∵圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是2,
∴2$\sqrt{{a}^{2}-\frac{{a}^{2}}{2}}$=2,
∴a=$\sqrt{2}$,
则圆心为M(0,$\sqrt{2}$),半径R=$\sqrt{2}$,
圆N:(x-1)2+(y-1)2=1的圆心为N(1,1),半径r=1,
则MN=$\sqrt{1+(\sqrt{2}-1)^{2}}$,
∵R+r=$\sqrt{2}$+1,R-r=$\sqrt{2}$-1,
∴R-r<$\sqrt{1+(\sqrt{2}-1)^{2}}$<R+r,
即两个圆相交.
故选:B.

点评 本题主要考查直线和圆相交的应用,以及两圆位置关系的判断,根据相交弦长公式求出a的值是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设全集U={-3,-2,-1,0,1,2,3},集合A={x∈Z|x2-2x-3≤0},则∁UA=(  )
A.{-3,-2}B.{2,3}C.(-3,-2)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=sinx-cosx,则f'(π)的值是(  )
A.-1B.0C.1D.π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.知圆C:(x-1)2+(y-2)2=25及直线l:(2m+1)x+(m+1)y=7m+4(m∈R).
(1)求直线恒过定点的坐标;
(2)求当m=0时,直线被圆所截的弦长..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设m为实数,函数f(x)=x3-x2-x+m.
(1)求f(x)的极值点;
(2)如果曲线y=f(x)与x轴仅有一个交点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知f(x)=$\frac{1}{2}$x+sinx,x∈[-$\frac{π}{2}$,$\frac{π}{2}$],则导函数f′(x)是(  )
A.仅有极小值的奇函数B.仅有极小值的偶函数
C.仅有极大值的偶函数D.既有极小值也有极大值的奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.随着人们经济收入的不断增长,个人购买家庭轿车已不再是一种时尚,车的使用费用,尤其是随着使用年限的增多,所支出的费用到底会增长多少,一直是购车一族非常关心的问题.某汽车销售公司做了一次抽样调査,并统计得出某款车的使用年限x与所支出的总费用y(万元)有如下的数据资料:
使用年限x23456
总费用y2.23.85.56.57.0
若由资料知y对x呈线性相关关系.试求:
1线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
2估计使用年限为10年时,车的使用总费用是多少?
附:回归直线的斜率和截距的最小二乘法估计公式分别为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设实数x,y满足约束条件$\left\{\begin{array}{l}{x≥1}\\{y≥1}\\{x+y-4≤0}\end{array}\right.$,若对于任意b∈[0,1],不等式ax-by>b恒成立,则实数a的取值范围是(  )
A.($\frac{2}{3}$,4)B.($\frac{2}{3}$,+∞)C.(2,+∞)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图所示,在长方体ABCD-A1B1C1D1中,AD=2,AB=AE=1,M为矩形AEHD内一点,若∠MGF=∠MGH,MG和平面EFGH所成角的正切值为$\frac{1}{2}$,则点M到平面EFGH的距离为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步练习册答案