精英家教网 > 高中数学 > 题目详情
如图在直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=2,AC=BC=1 则异面直线A1B与AC所成角的余弦值是(  )
A、
6
3
B、
2
2
C、
3
3
D、
6
6
考点:异面直线及其所成的角
专题:空间角
分析:由AC∥A1C1,知∠C1A1B是异面直线A1B与AC所成角,由此利用余弦定理能求出异面直线A1B与AC所成角的余弦值.
解答: 解:在直三棱柱ABC-A1B1C1中,
∵AC∥A1C1,∴∠C1A1B是异面直线A1B与AC所成角,
∵∠ACB=90°,AA1=2,AC=BC=1,
A1B=
4+1+1
=
6
C1B=
4+1
=
5
,A1C1=1,
∴cosC1A1B=
6+1-5
2×1×
6
=
6
6

∴异面直线A1B与AC所成角的余弦值是
6
6

故选:D.
点评:本题考查异面直线所成角的余弦值的求法,是中档题,解题时要认真审题,注意余弦定理的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某县区有A,B,C三所高中,共有高一学生4000人,且A,B,C三所学校的高一学生人数之比为3:2:5.现要从该区高一学生中随机抽取一个容量为200的样本,则A校被抽到的学生人数为
 
人.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线2x-my+1-3m=0,当m变动时,所有直线都通过定点(  )
A、(-
1
2
,3)
B、(
1
2
,3)
C、(
1
2
,-3)
D、(-
1
2
,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AD,BE,CF分别是BC,CA,AB边上的中线,G是它们的交点,则下列等式中不正确的是(  )
A、
BG
=
2
3
BE
B、
DG
=
1
2
AG
C、
CG
=-2
FG
D、
1
3
DA
+
2
3
FC
=
1
2
BC

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,最小正周期是
π
2
的偶函数为(  )
A、y=tan2x
B、y=cos(4x+
π
2
C、y=2cos22x-1
D、y=cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:

设A(-2,
3
),椭圆3x2+4y2=48的右焦点是F,点P在椭圆上移动,当|AP|+2|PF|取最小值时P点的坐标是(  )
A、(0,2
3
B、(0,-2
3
C、(2
3
3
D、(-2
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线两条渐近线的夹角为60°,该双曲线的离心率为(  )
A、
3
2
B、
2
3
3
2
C、
3
或2
D、
2
3
3
或2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=lgx+x-3的零点所在的区间是(  )
A、(1,2)
B、(3,4)
C、(2,3)
D、(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={x|x=m+
2
n,m、n∈Z}
(1)若t∈Z,试判断t是否是集合M的元素;
(2)若x1、x2∈M,试判断x1+x2及x1x2是否属于集合M,如果属于,请给出证明;若不属于,请给出反例.

查看答案和解析>>

同步练习册答案