精英家教网 > 高中数学 > 题目详情
1.从6人中选出4人分别到巴黎,伦敦,悉尼,莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲,乙两人不去巴黎游览,则不同的选择方案共有240.(用数字作答)

分析 根据题意,使用间接法,首先计算从6人中选4人分别到四个城市游览的情况数目,再分析计算其包含的甲、乙两人去巴黎游览的情况数目,进而由事件间的关系,计算可得答案.

解答 解:根据题意,由排列公式可得,首先从6人中选4人分别到四个城市游览,有A64=360种不同的情况,
其中包含甲到巴黎游览的有A53=60种,乙到巴黎游览的有A53=60种,
故这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有360-60-60=240种;
故答案为240.

点评 本题考查排列的应用,注意间接法比直接分析更为简便,要使用间接法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.函数f(x)=x2+2x,集合A={(x,y)|f(x)+f(y)≤2},B={(x,y)|f(x)≤f(y)},则由A∩B的元素构成的图形的面积是(  )
A.πB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.给出以下四个结论:
①函数$f(x)=\frac{2x-1}{x+1}$的对称中心是(-1,2);
②若关于x的方程$x-\frac{1}{x}+k=0在x∈({0,1})$没有实数根,则k的取值范围是k≥2;
③在△ABC中,“bcosA=acosB”是“△ABC为等边三角形”的充分不必要条件;
④若$f(x)=sin({2x-\frac{π}{3}})$的图象向右平移φ(φ>0)个单位后为奇函数,则φ最小值是$\frac{π}{12}$.
其中正确的结论是①.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知对数函数f(x)=logax(a>0,a≠1).
(1)若f(8)=3,求a的值;
(2)解不等式f(x)≤loga(2-3x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知A(-1,0),B(3,0),则与A距离为1且与B距离为4的点有(  )
A.3个B.2个C.1个D.0个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.“a≠1或b≠2”是“a+b≠3”的(  )
A.必要不充分条件B.既不充分也不必要条件
C.充要条件D.充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知sinα+cosα=$\frac{\sqrt{2}}{3}$,0<α<π,则tan(α-$\frac{π}{4}$)=$2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=\sqrt{3}sin({ωx+ω})-cos({ωx+ω})({-\frac{π}{2}<φ<0,ω>0})$为偶函数,且函数的y=f(x)图象相邻的两条对称轴间的距离为$\frac{π}{2}$.
(1)求$f({\frac{π}{24}})$的值;
(2)将y=f(x)的图象向右平移$\frac{π}{6}$个单位后,再将所得的图象上个点的横坐标伸长为原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求y=g(x)的单调区间,并求其在$[{-\frac{π}{3},\frac{5π}{6}}]$上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)的导函数为f'(x),且f'(x)<f(x)对任意的x∈R恒成立,则下列不等式均成立的是(  )
A.f(ln2)<2f(0),f(2)<e2f(0)B.f(ln2)>2f(0),f(2)>e2f(0)
C.f(ln2)<2f(0),f(2)>e2f(0)D.f(ln2)>2f(0),f(2)<e2f(0)

查看答案和解析>>

同步练习册答案