精英家教网 > 高中数学 > 题目详情
16.在△ABC中,角A,B,C所对的边分别为a,b,c.已知sin$\frac{C}{2}$=$\frac{\sqrt{10}}{4}$.
(1)求cos(C+$\frac{π}{6}$)的值;
(2)若△ABC的面积是$\frac{3\sqrt{15}}{4}$,且sin2A+sin2B=$\frac{13}{16}$sin2C.求c的值.

分析 (1)推导出cosC=1-2sin2$\frac{C}{2}$=-$\frac{1}{4}$,从而sinC=$\frac{\sqrt{15}}{4}$,由此利用余弦函数加法定理能求出cos(C+$\frac{π}{6}$).
(2)由△ABC的面积是$\frac{3\sqrt{15}}{4}$,求出ab=6,由正弦定理得${a}^{2}+{b}^{2}=\frac{13}{16}{c}^{2}$,由此利用余弦定理能求出c.

解答 解:(1)∵在△ABC中,角A,B,C所对的边分别为a,b,c,sin$\frac{C}{2}$=$\frac{\sqrt{10}}{4}$.
∴cosC=1-2sin2$\frac{C}{2}$=1-2×($\frac{\sqrt{10}}{4}$)2=1-$\frac{5}{4}$=-$\frac{1}{4}$,
sinC=$\sqrt{1-(-\frac{1}{4})^{2}}$=$\frac{\sqrt{15}}{4}$,
∴cos(C+$\frac{π}{6}$)=cosCcos$\frac{π}{6}$-sinCsin$\frac{π}{6}$
=-$\frac{1}{4}×\frac{\sqrt{3}}{2}$-$\frac{\sqrt{15}}{4}×\frac{1}{2}$=-$\frac{\sqrt{3}+\sqrt{15}}{8}$.
(2)∵△ABC的面积是$\frac{3\sqrt{15}}{4}$,
∴${S}_{△ABC}=\frac{1}{2}absinC=\frac{1}{2}ab×\frac{\sqrt{15}}{4}$=$\frac{3\sqrt{15}}{4}$,解得ab=6,
∵$si{n}^{2}A+si{n}^{2}B=\frac{13}{16}si{n}^{2}C$,即${a}^{2}+{b}^{2}=\frac{13}{16}{c}^{2}$,
由余弦定理得:c2=a2+b2-2abcosC=$\frac{13}{16}{c}^{2}-2×6×(-\frac{1}{4})$=$\frac{13}{16}{c}^{2}$+3,
解得c=4.

点评 本题考查三角函值和三角形边长的求法,涉及到正弦定理、余弦定理、同角三角函数关系式、余弦函数加法定理等基础知识,考查推理论证能力、运算求解能力,考查函数与方思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=|x+1|-a|x-1|,若f(x)≤a|x+3|,则a的最小值$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.甲盒放有2017个白球和n个黑球,乙盒中放有足够的黑球.现每次从甲盒中任取两个球放在外面.当被取出的两个球同色时,需再从乙盒中取一个黑球放入甲盒;当取出的两球异色时,将取出的白球再放回甲盒,直到甲盒中只剩两个球,则下列结论不可能发生的是①②③(填入满足题意的所有序号).
①甲盒中剩两个黑球;②甲盒中剩两个白球;③甲盒中剩两个同色球;④甲盒中剩两个异色球.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)是R上的奇函数,且满足f(π-x)=f(x),当0≤x≤$\frac{π}{2}$时,f(x)=cosx-1,则当0≤x≤π时,f(x)的图象与x轴所围成图形的面积为(  )
A.π-2B.2π-4C.3π-6D.4π-8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在锐角△ABC中,角A,B,C所对的边分别是a,b,c,且$\frac{1}{tanA}$+$\frac{1}{tanB}$=1,asinB=$\sqrt{3}$R(R为△ABC外接圆的半径)
(Ⅰ)求∠C的值;
(Ⅱ)若c=$\sqrt{10}$,且$\frac{1}{a}$+$\frac{1}{b}$=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在矩形ABCD中,已知AB=2,AD=4,点E、F分别在AD、BC上,且AE=1,BF=3,将四边形AEFB沿EF折起,使点B在平面CDEF上的射影H在直线DE上.

(I)求证:CD⊥BE;
(II)求点B到平面CDE的距离;
(III)求直线AF与平面EFCD所成的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,内角A,B,C的对边分别为a,b,c.已知$\sqrt{3}a=b(sinC+\sqrt{3}cosC)$.
(Ⅰ)求角B的大小;
(Ⅱ)若b=2,求a+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.榫卯(sǔn mǎo)是古代中国建筑、家具及其它器械的主要结构方式,是在两个构件上采用凹凸部位相结合的一种连接方式,凸出部分叫做“榫头”.某“榫头”的三视图及其部分尺寸如图所示,则该“榫头”体积等于(  )
A.12B.13C.14D.15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.6名教师被随机地平均分配到甲、乙、丙三个不同学校进行调研,且学校甲至少有一名男教师的概率是$\frac{3}{5}$.
(Ⅰ)求6名教师中男、女教师各几人;
(Ⅱ)求学校乙恰好男、女教师各一人的概率;
(Ⅲ)设随机变量ζ表示在学校丙的男教师的人数,求ζ的分布列及期望.

查看答案和解析>>

同步练习册答案