精英家教网 > 高中数学 > 题目详情
12.已知集合A={(x,y)|y=x},B={(x,y)|y=x2},则A∩B为(  )
A.(0,1)B.{0,1}C.{(0,1)}D.{(0,0),(1,1)}

分析 联立A与B中两等式组成方程组,求出方程组的解看确定出A与B的交集.

解答 解:联立A与B中的方程得:$\left\{\begin{array}{l}{y=x}\\{y={x}^{2}}\end{array}\right.$,
消去y得:x=x2
解得:x=0或x=1,
把x=0代入得:y=0;把x=1代入得:y=1,
∴方程组的解为$\left\{\begin{array}{l}{x=0}\\{y=0}\end{array}\right.$或$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,
则A∩B={(0,0),(1,1)},
故选:D.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A,B,C所对的边分别为a,b,c,且cos2$\frac{B-C}{2}$-sinB•sinC=$\frac{2-\sqrt{2}}{4}$.
(1)求A;
(2)若a=4,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在三角形ABC中,角A、B、C的对边长分别为a,b,c,且满足a:b:c=6:4:3,则$\frac{sin2A}{sinB+sinC}$=(  )
A.-$\frac{11}{14}$B.$\frac{12}{7}$C.-$\frac{11}{24}$D.-$\frac{7}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知$\overrightarrow a$=(1,-1),$\overrightarrow b$=(-1,2),若$(λ\overrightarrow a+\overrightarrow b)$⊥$(\overrightarrow a+\overrightarrow b)$,则实数λ=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.程序框图如图所示,该程序运行后输出的S的值是(  )
A.2B.-$\frac{1}{2}$C.-3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若x,y满足$\left\{\begin{array}{l}{2x-y≥0}\\{x-3y≤0}\\{x+2y-5≤0}\end{array}\right.$,则点(x,y)所在的平面区域的面积为$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\left\{\begin{array}{l}lo{g}_{2}(1-x),-1≤x<0\\{x}^{3}-3x+2,0≤x≤a\end{array}\right.$的值域是[0,2],则实数a的取值范围是$[1,\sqrt{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知$\overrightarrow{a}$=(6,1),$\overrightarrow{b}$=(-2,2),若单位向量$\overrightarrow{c}$与2$\overrightarrow{a}$+3$\overrightarrow{b}$共线,则向量$\overrightarrow{c}$的坐标为($\frac{3}{5}$,$\frac{4}{5}$)或(-$\frac{3}{5}$,-$\frac{4}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知四边形ADEF为矩形,四边形ABCD为直角梯形且AB⊥AD,AB∥CD,M、N、P分别为EC、FC、FB的中点.
(Ⅰ)求证:MP∥平面ABCD;
(Ⅱ)求证:平面MNP⊥平面EDC.

查看答案和解析>>

同步练习册答案