精英家教网 > 高中数学 > 题目详情
已知函数f(x)=sin(ωx+φ)对任意的实数x均存在f(a)≤f(x)≤f(0),且|a|的最小值为
π
2
,则函数f(x)的单调递减区间为
 
考点:正弦函数的图象
专题:
分析:根据条件f(a)≤f(x)≤f(0),确定函数的最大值和最小值,进而确定φ的值,由|a|的最小值为
π
2
,得到函数的最小周期,解得ω=2,然后根据三角函数的单调性即可求出函数的单调减区间.
解答: 解:∵对任意的实数x均存在f(a)≤f(x)≤f(0),
∴f(0)为函数的最大值,f(a)为函数最小值.
即f(0)=sinφ=1,即φ=
π
2
+2kπ
,k∈Z,
∴f(x)=sin(ωx+
π
2
+2kπ
)=cosωx,
∵f(a)为函数最小值.
∴f(a)=cos(aω)=-1,
∵|a|的最小值为
π
2

∴|a|的最小值为
T
2

T
2
=
π
2
,∴最小周期T=π,
此时T=
ω

∴ω=2,
∴f(x)=cos2x,
由2kπ≤2x≤2kπ+π,
kπ≤x≤kπ+
π
2

即函数的单调递减区间为[kπ,kπ+
π
2
],k∈Z

故答案为:[kπ,kπ+
π
2
],k∈Z
点评:本题主要考查三角函数的图象和性质,利用条件求出函数的解析式是解决本题的关键,要求熟练掌握相应的三角公式和三角函数的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

直线l过点P(6,4)且与x轴正半轴交于点A,与y轴正半轴交于点B,O为坐标原点.若M为线段AB上一点,且直线OM的斜率为4,当△OAM的面积最小时,求M点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cos2
ωx
2
+cos(ωx+
π
3
)(其中ω>0)的最小正周期为π.
(1)求ω的值,并求函数f(x)的单调递减区间;
(2)在锐角△ABC中,a,b,c分别是角A,B,C的对边,若f(A)=-
1
2
,c=3,△ABC的面积为6
3
,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角三角形ABC中,sinA=
3
5
,tan(A-B)=-
1
3
,求sinB,cosC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x∈R,集合A={4,x2,x},B={9,4x-3,x-5},若A∩B={9},求x的值和集合A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线-x+
3
y-6=0的斜率为
 
,在y轴截距为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某零件的三视图及尺寸如图所示,则该零件的体积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

当x∈[-3,3]时,函数f(x)=|x3-3x|的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在三角形ABC中,已知向量
m
=(sinB,cosB),
n
=(cosA,sinA),若
m
n
,求sinA+sinB的取值范围.

查看答案和解析>>

同步练习册答案