精英家教网 > 高中数学 > 题目详情
已知圆O:x2+y2=4和点M(1,a).
(1)若过点M有且只有一条直线与圆O相切,求实数a的值,并求出切线方程;
(2)若a=
2
,求过点M的最短弦AC与最长弦BD所在的直线方程.并求此时的SABCD
考点:圆的切线方程,直线与圆的位置关系
专题:计算题,直线与圆
分析:(1)要求过点M的切线方程,关键是求出切点坐标,由M点也在圆上,故满足圆的方程,则易求M点坐标,然后代入圆的切线方程,整理即可得到答案.
(2)当a=
2
时,M(1,
2
)在圆x2+y2=4内,由于圆内弦最长的即是圆的直径即BD为直径,而AC是过M且与BD垂直的弦,此时DB=4,圆心(0,0)到直线AC的距离d=
3
,从而可得,AC=2,即可求出此时的SABCD
解答: 解:(1)由条件知点M在圆O上,
∴1+a2=4
∴a=±
3

当a=
3
时,点M为(1,
3
),kOM=
3

此时切线方程为:y-
3
=-
3
3
(x-1)
即:x+
3
y-4=0;
当a=-
3
时,点M为(1,-
3
),kOM=-
3

此时切线方程为:y+
3
=-
3
3
(x-1)
即:x-
3
y-4=0
∴所求的切线方程为:x+
3
y-4=0或即:x-
3
y-4=0
(2)当a=
2
时,M(1,
2
)在圆x2+y2=4内,由于圆内弦最长的即是圆的直径即BD为直径,而AC是过M且与BD垂直的弦
此时DB=4,圆心(0,0)到直线AC的距离d=
3

从而可得,AC=2,∴S=
1
2
×2×4
=4.
点评:本题考查的是圆的切线方程,即直线与圆方程的应用.(求过一定点的圆的切线方程,首先必须判断这点是否在圆上.若在圆上,则该点为切点,若点P(x0,y0)在圆(x-a)2+(y-b)2=r2(r>0)上,则 过点P的切线方程为(x-a)(x0-a)+(y-b)(y0-b)=r2(r>0);若在圆外,切线应有两条.一般用“圆心到切线的距离等于半径长”来解较为简单.若求出的斜率只有一个,应找出过这一点与x轴垂直的另一条切线.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=-cos2x-sinx+1的值域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设n∈N*,则C
 
0
n
+C
 
1
n
6+C
 
2
n
62+C
 
3
n
63+…+C
 
n
n
6n=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若a>1,则函数y=(
x
|x|
)•ax的图象的基本形状是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2mx+1.
(1)m=2时,求f(x)在?x∈[0,1]上的最大值;
(2)若x2-2mx+1>0对?x∈[0,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别为△ABC的三个内角A,B,C的对边,
m
=(b,c),
n
=(cosC,cosB)且
m
n
=-2acosA,(Ⅰ)求角A;
(Ⅱ)若a=2
3
,△ABC的面积为
3
,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2,1),
b
=(1,2)则
a
b
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是王珊早晨离开家边走边背诵英语过程中离家距离y与行走时间x之间函数关系的图象.若用黑点表示王珊家的位置,则王珊步行走的路线可能是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)过点(2,
2
)
,则f(x)的反函数为f-1(x)=
 

查看答案和解析>>

同步练习册答案