精英家教网 > 高中数学 > 题目详情
“已知实数x,y满足(x-1)2+(y-1)2=1,求
x2+y2
的最大值”时,可理解为在以点(1,1)为圆心,以1为半径的圆上找一点,使它到原点距离最远问题,据此类比到空间,试分析:已知实数x,y,z满足(x-1)2+(y-1)2+(z-1)2=1,求
x2+y2+z2
的最大值是(  )
A、
2
+1
B、
2
-1
C、
3
+1
D、
3
-1
考点:类比推理
专题:探究型,推理和证明
分析:由题意,根据类比思想,
x2+y2+z2
的最大值是球心(1,1,1)到原点的距离加上半径,即可得出结论.
解答: 解:由题意,根据类比思想,(x-1)2+(y-1)2+(z-1)2=1,球心(1,1,1)到原点的距离为
3

x2+y2+z2
的最大值是球心(1,1,1)到原点的距离加上半径,即
3
+1.
故选:C.
点评:本题考查的知识点是类比推理,类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

骰子是一个立方体,6面上分别刻有1,2,3,4.5  6均匀的骰子10只.一次掷4只,3只骰子,分别得出各只骰子正面朝上的点数之和为6概率的比为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
4
x
+
9
y
=2(x>0,y>0),则xy的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,直线l过点A(2,
π
4
)且与极轴方向所成角为
4
,则极点到直线l的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知D,E,F分别是△ABC的三边BC,CA,AB上的点,且满足
AF
=
2
3
AB
AE
=
3
4
AC
AD
=λ(
AB
|
AB
|cosB
+
AC
|
AC
|cosC
)(λ∈R),
DE
DA
=
DE
DC
DF
=μ(
BD
sinB
|
BD
|
+
AD
cosB
|
AD
|
)(μ∈R).则
|
EF
|
|
BC
|
=(  )
A、
1
3
B、
1
2
C、
3
3
D、
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,在其定义域内既是奇函数又是减函数的是(  )
A、y=sinx
B、y=-x
C、y=(
1
2
x
D、y=
1
x

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线C1的参数方程为
x=
2
cosα
y=1+
2
sinα
(α为参数),以原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为
2
ρsin(θ+
π
4
)=5.设点P,Q分别在曲线C1和C2上运动,则|PQ|的最小值为(  )
A、
2
B、2
2
C、3
2
D、4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)是偶函数且在(0,+∞)上减函数,且f(3)=1,则不等式f(x)<1的解集为(  )
A、{x|x>3或-3<x<0}
B、{x|x<-3或0<x<3}
C、{x|x<-3或x>3}
D、{x|-3<x<0或0<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α的终边经过点P(
3
5
4
5
).
(1)求sinα,cosα;
(2)求sin(
π
4
+α)的值.

查看答案和解析>>

同步练习册答案