分析 (1)由题设知 $\frac{|a+5|}{\sqrt{{a}^{2}+1}}$<5,即可求实数a的取值范围;
(2)若弦AB的垂直平分线l过点P(-2,4),利用垂直关系,建立方程,可求实数a的值.
解答 解:(1)由题设知 $\frac{|a+5|}{\sqrt{{a}^{2}+1}}$<5,故12a2-5a>0,所以,a<0,或a>$\frac{5}{12}$.
故实数a的取值范围为(-∞,0)∪($\frac{5}{12}$,+∞);
(2)ax-y+5=0的斜率为a,则a$•\frac{4}{-3}$=-1,∴a=-$\frac{3}{4}$.
点评 本题考查直线与圆的位置关系,考查点与直线的位置关系,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(-∞\;,\;\;\frac{1}{e})$ | B. | (e,+∞) | C. | $(\frac{1}{e}\;,\;\;e)$ | D. | $(0\;,\;\;\frac{1}{e})$∪(e,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 在区间[$\frac{2π}{3}$,$\frac{7π}{6}$]上是增函数 | B. | 在区间[-π,-$\frac{π}{2}$]上是减函数 | ||
| C. | 在区间[-$\frac{π}{3}$,$\frac{π}{4}$]上是增函数 | D. | 在区间[$\frac{π}{3}$,$\frac{5π}{6}$]上是减函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com