精英家教网 > 高中数学 > 题目详情
2.若函数$f(x)=\frac{1}{2}{e^x}$与g(x)的图象关于直线y=x对称,P,Q分别是f(x),g(x)上的动点,则|PQ|的最小值为(  )
A.1-1n2B.1+1n2C.$\sqrt{2}(1-1n2)$D.$\sqrt{2}(1+1n2)$

分析 根据函数关于y=x,求出函数的反函数,利用曲线关于y=x对称的性质,只要求出P到直线y=x的距离的最小值即可得到结论.

解答 解:f(x)=$\frac{1}{2}$ex关于直线y=x对称得g(x),
∴由y=$\frac{1}{2}$ex,得ex=2y,
即x=ln2y,
∴函数f(x)=$\frac{1}{2}$ex的反函数为g(x)=ln2x,
则要使|PQ|取得最小值,
则只需f(x)上的点到直线y=x的距离最小即可,
如图所示:

y′=f′(x)=$\frac{1}{2}$ex
由y′=f′(x)=$\frac{1}{2}$ex=1,
得ex=2,解得x=ln2,即切点P的横坐标为ln2,此时y=$\frac{1}{2}$eln2=1,
即P(ln2,1),则P到直线y=x的距离d=$\frac{|ln2-1|}{\sqrt{2}}$=$\frac{(1-ln2)\sqrt{2}}{2}$,
∴|PQ|最小值=2d=$\sqrt{2}$(1-ln2),
故选:C.

点评 本题主要考查两点间距离的求法,利用函数y=x的对称性,利用导数求出最小值是解决本题的关键,综合性较强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知函数$f(x)=\frac{x}{1+x}$,则$f(1)+f(2)+f(3)+…+f(2017)+f(\frac{1}{2})+f(\frac{1}{3})+…+f(\frac{1}{2017})$=$\frac{4033}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设z=1-i(i是虚数单位),则$\frac{1}{z}$+$\overline{z}$=(  )
A.$\frac{1}{2}-2i$B.$\frac{3}{2}$+$\frac{3}{2}$iC.-$\frac{1}{2}$+2iD.$\frac{3}{2}$-$\frac{3}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某微商赠品费用支出与销售额之间有如下对应数据:
x(万元)12345
y(万元)2430384251
(1)求回归直线方程;
(2)试预测该微商赠品费用支出为8万元时,销售额多大.
参考公式:回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=ex,g(x)=lnx-2.
(Ⅰ)证明:$g(x)≥-\frac{e}{x}$;
(Ⅱ)若对所有的x≥0,都有$f(x)-\frac{1}{f(x)}≥ax$,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设a>0,f(x)=$\frac{2x}{2+x}$,令a1=1,an+1=f(an),n∈N*
(1)写出a2,a3,a4的值,并猜出数列{an}的通项公式;
(2)用数学归纳法证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数$f(x)={2017^x}+ln(\sqrt{{x^2}+1}+x)-{2017^{-x}}$+1,则不等式f(2x-1)+f(x)>2的解集为($\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设数列{an}的前n项和为Sn,a1=1,an+1=3Sn+1,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=n+an,求Tn=b1+b2+…+bn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x3-x2-x,
(1)曲线y=f(x)在点(0,f(0))处的切线方程
(2)求函数y=f(x)的单调区间.

查看答案和解析>>

同步练习册答案