精英家教网 > 高中数学 > 题目详情
14.已知函数$f(x)={2017^x}+ln(\sqrt{{x^2}+1}+x)-{2017^{-x}}$+1,则不等式f(2x-1)+f(x)>2的解集为($\frac{1}{3}$,+∞).

分析 由题意,f(-x)+f(x)=2,∴f(2x-1)+f(x)>2可化为f(2x-1)>f(-x),利用函数f(x)在R上单调递增,即可求解.

解答 解:由题意,f(-x)+f(x)=2,∴f(2x-1)+f(x)>2可化为f(2x-1)>f(-x),
又2017x,-2017-x,ln($\sqrt{{x}^{2}+1}+x$)均为增函数,∴函数f(x)在R上单调递增,∴2x-1>x,∴x>$\frac{1}{3}$,
∴不等式的解集为($\frac{1}{3}$,+∞),
故答案为($\frac{1}{3}$,+∞).

点评 本题考查函数的对称性,考查函数单调性的运用,确定函数的对称性、单调性是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.设函数$f(x)=\frac{1}{2}{x^3}-a{x^2}+1$.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)方程f(x)=0有三个不同的解,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知a,b∈R,在(ax+$\frac{2b}{x}$)8的展开式中,第二项系数为正,各项系数和为256,则该展开式中的常数项的取值范围是(0,70].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数$f(x)=\frac{1}{2}{e^x}$与g(x)的图象关于直线y=x对称,P,Q分别是f(x),g(x)上的动点,则|PQ|的最小值为(  )
A.1-1n2B.1+1n2C.$\sqrt{2}(1-1n2)$D.$\sqrt{2}(1+1n2)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.直线y=x+b与曲线$\left\{\begin{array}{l}{x=\frac{3}{2}cosθ}\\{y=\frac{3}{2}sinθ}\end{array}\right.$(θ为参数,且-$\frac{π}{2}$≤θ≤$\frac{π}{2}$)有两个不同的交点,则实数b的取值范围是(  )
A.(-$\frac{3\sqrt{2}}{2}$,$\frac{3\sqrt{2}}{2}$)B.(-$\frac{3\sqrt{2}}{2}$,-$\frac{3}{2}$]C.(-$\sqrt{2}$,$\sqrt{2}$)D.(-$\sqrt{2}$,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x)为定义在R行的可导函数,且f(x)<f'(x)对于x∈R恒成立,且e为自然对数的底数,则下面正确的是(  )
A.f(1)>ef(0),f(2016)>e2016f(0)B.f(1)<ef(0),f(2016)>e2016f(0)
C.f(1)>ef(0),f(2016)<e2016f(0)D.f(1)<ef(0),f(2016)>e2016f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.现有两个推理:
①在平面内“三角形的两边之和大于第三边”类比在空间中“四面体的任意三个面的面积之和大于第四个面的面积”;
②由“若数列{an}为等差数列,则有$\frac{{a}_{6}+{a}_{7}+…+{a}_{10}}{5}$=$\frac{{a}_{1}+{a}_{2}+…+{a}_{15}}{15}$成立”类比“若数列{bn}为等比数列,则有$\root{5}{{b}_{6}{b}_{7}…{b}_{10}}$=$\root{15}{{b}_{1}{b}_{2}…{b}_{15}}$成立”
则关于两个推理(  )
A.都正确B.只有②正确C.只有①正确D.都不正确

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)${({2x+\sqrt{x}})^5}$的展开式中,求x3的系数;
(2)已知${({\sqrt{x}-\frac{a}{{\sqrt{x}}}})^5}$的展开式中含${x^{\frac{3}{2}}}$的项的系数为30,求a的值;
(3)$({x+\frac{a}{x}})•{({2x-\frac{1}{x}})^5}$的展开式中各项系数的和为2,求该展开式中的常数项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在一段时间内,某种商品的价格x元和需求量y件之间的一组数据为:
x(元)1416182022
y(件)1210753
且知x与y具有线性相关关系,求出y对x的线性回归方程,并说明拟合效果的好坏.

查看答案和解析>>

同步练习册答案