分析 (1)利用同角三角函数的基本关系,诱导公式,以及三角函数在各个象限中的符号,求得sinα,cosα的值.
(2)由条件利用诱导公式,求得要求式子的值.
解答 解:(1)∵tanα=$\frac{sinα}{cosα}$=2,α∈(π,$\frac{3π}{2}$),sin2α+cos2α=1,
∴sinα<0,cosα<0,求得$sinα=\frac{-2}{{\sqrt{5}}},\;\;cosα=\frac{-1}{{\sqrt{5}}}$.
(2)$\frac{{sin({π+α})+2sin(\frac{3π}{2}+α)}}{{cos({3π-α})+1}}$=$\frac{-sinα-2cosα}{-cosα+1}$═$\frac{{\frac{2}{{\sqrt{5}}}+\frac{2}{{\sqrt{5}}}}}{{\frac{1}{{\sqrt{5}}}+1}}=\frac{4}{{1+\sqrt{5}}}=\sqrt{5}-1$.
点评 本题主要考查同角三角函数的基本关系,诱导公式,以及三角函数在各个象限中的符号,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 数N | 1.010 | 1.015 | 1.017 | 1.310 | 2.000 |
| 对数lgN | 0.004 3 | 0.006 5 | 0.007 3 | 0.117 3 | 0.301 0 |
| 数N | 3.000 | 5.000 | 12.48 | 13.11 | 13.78 |
| 对数lgN | 0.477 1 | 0.699 0 | 1.096 2 | 1.117 6 | 1.139 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{c^2}{{{a^2}+{b^2}}}$ | B. | $\frac{a^2}{{{c^2}+{b^2}}}$ | C. | $\frac{b^2}{{{a^2}+{c^2}}}$ | D. | $\frac{a}{{{c^2}+{b^2}}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com