精英家教网 > 高中数学 > 题目详情
16.医院用甲、乙两种原料为手术后的病人配营养餐.甲种原料每10g含5单位蛋白质和10单位铁质,售价3元;乙种原料每10g含7单位蛋白质和4单位铁质,售价2元.若病人每餐至少需要35单位蛋白质和40单位铁质.试问:应如何使用甲、乙原料,才能既满足营养,又使费用最省.

分析 首先由题意,列出两个变量满足的不等式组以及目标函数,然后画出可行域,利用目标函数的几何意义求最值.

解答 解:设甲、乙两种原料分别用10x g和10y g,总费用为z,则$\left\{\begin{array}{l}{5x+7y≥35}\\{10x+4y≥40}\\{x≥0,y≥0}\end{array}\right.$,目标函数为z=3x+2y,作出可行域如图

把z=3x+2y变形为y=-$\frac{3}{2}x+\frac{z}{2}$,得到斜率为-$\frac{3}{2}$.在y轴上的截距为$\frac{z}{2}$,随z变化的一族平行直线.
由图可知,当直线y=-$\frac{3}{2}x+\frac{z}{2}$经过可行域上的点A时,截距$\frac{z}{2}$最小,即z最小.
由$\left\{\begin{array}{l}{5x+7y=35}\\{10x+4y=40}\end{array}\right.$得A($\frac{14}{5}$,3),
∴zmin=3×$\frac{14}{5}$+2×3=14.4.
∴选用甲种原料$\frac{14}{5}$×10=28(g),乙种原料3×10=30(g)时,费用最省.

点评 本题考查了简单线性规划问题的应用;关键是明确题意,列出约束条件,利用数形结合求目标函数的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.下列各组函数中,表示同一个函数的是(  )
A.y=1,y=$\frac{x}{x}$B.y=x,y=$\root{3}{{x}^{3}}$
C.y=$\sqrt{x-1}$×$\sqrt{x+1}$,y=$\sqrt{{x}^{2}-1}$D.y=|x|,$y={({\sqrt{x}})^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知p:$\frac{3}{x-1}$≤1,q:x2+x≤a2-a(a<0),若¬q成立的一个充分而不必要条件是¬p,则实数a的取值范围为(-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.正方体ABCD-A1B1C1D1中,棱长为1,点E,F,G分别是线段AB,BC,DD1的中点,求作过E,F,G三点的截面,并求截面的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.下列命题中真命题有(1),(5)
(1)已知集合A={1,2},$B=\left\{{x\left|{x=\frac{1}{a}}\right.}\right\}$,若B⊆A,则a的值为$1或\frac{1}{2}$
(2)已知$f(x)=\left\{\begin{array}{l}({2-a})x+1,({x<1})\\{a^x},({x≥1})\end{array}\right.$(a>0,a≠1)是R上的增函数,那么a的取值范围是(1,2)
(3)函数$f(x)=\frac{1}{x}$在定义域(-∞,0)∪(0,∞)上是减函数
(4)$\left\{{x∈N\left|{\frac{6}{6-x}∈N}\right.}\right\}=\left\{{\frac{6}{6-x}∈N\left|{x∈N}\right.}\right\}$
(5)定义在R上的函数f(x)满足f(x+2)=3f(x),当x∈[0,2]时,f(x)=x2-2x,则x∈[-4,-2]时,f(x)的最小值是$-\frac{1}{9}$.
(6)若A={x|y=x2+1},B={y|y=x2+1},C={(x,y)|y=x2+1},则A∪B=C.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.以(1,-2)为圆心且过原点的圆的方程为(x-1)2+(y+2)2=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow{b}$=(-2,λ),且$\overrightarrow{a}$与$\overrightarrow{b}$共线,则|$\overrightarrow{a}$+$\overrightarrow{b}$|的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知a=log0.53,b=20.5,c=0.50.3,则a,b,c三者的大小关系是(  )
A.b>a>cB.b>c>aC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=2log2(x2+1)(x<-1)的反函数f-1(x)=-$\sqrt{{2}^{\frac{x}{2}}-1}$(x>2).

查看答案和解析>>

同步练习册答案