精英家教网 > 高中数学 > 题目详情
18.设直线y=t与曲线C:y=x(x-3)2的三个交点分别为A(a,t),B(b,t),C(c,t),且a<b<c.现给出如下结论:
①abc的取值范围是(0,4);
②a2+b2+c2为定值;
③c-a有最小值无最大值.
其中正确结论的个数为(  )
A.0B.1C.2D.3

分析 作出f(x)=x(x-3)2的函数图象,判断t的范围,根据f(x)的变化率判断c-a的变化情况,构造函数g(x)=x(x-3)2-t,根据根与系数的关系得出abc,a2+b2+c2,c-a的值进行判断.

解答 解:令f(x)=x(x-3)2=x3-6x2+9x,f′(x)=3x2-12x+9,令f′(x)=0得x=1或x=3.
当x<1或x>3时,f′(x)>0,当1<x<3时,f′(x)<0.
∴f(x)在(-∞,1)上是增函数,在(1,3)上是减函数,在(3,+∞)上是增函数,
当x=1时,f(x)取得极大值f(1)=4,当x=3时,f(x)取得极小值f(3)=0.
作出函数f(x)的图象如图所示:
∵直线y=t与曲线C:y=x(x-3)2有三个交点,∴0<t<4.
令g(x)=x(x-3)2-t=x3-6x2+9x-t,则a,b,c是g(x)的三个实根.
∴abc=t,a+b+c=6,ab+bc+ac=9,
∴a2+b2+c2=(a+b+c)2-2(ab+bc+ac)=18.
由函数图象可知f(x)在(0,1)上的变化率逐渐减小,在(3,4)上的变化率逐渐增大,
∴c-a的值先增大后减小,故c-a存在最大值,不存在最小值.
故①,②正确,
故选:C.

点评 本题考查了导数与函数的单调性,函数的图象,三次方程根与系数的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知($\sqrt{2+\sqrt{3}}$)x+($\sqrt{2-\sqrt{3}}$)x=4.求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.若角θ的终边经过两直线x-y+2=0与x+y-6=0的交点P.
(1)求角θ的正切值;
(2)求经过点P且与角θ的终边垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=9x-2a•3x+3,x∈[-1,1].
(1)若f(x)的最小值记为h(a),求h(a)的解析式;
(2)是否存在实数m,n同时满足以下条件:
①log3m>log3n>1;
②当h(a)的定义域为[n,m]时,值域为[n2,m2].若存在,求出m,n的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知O是锐角△ABC的外心,$tanA=\frac{1}{2}$.若$\frac{cosB}{sinC}•\overrightarrow{AB}+\frac{cosC}{sinB}•\overrightarrow{AC}=2m•\overrightarrow{AO}$,则实数m=$\frac{{\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知sin($\frac{x}{2}$)-2cos($\frac{x}{2}$)=0.
(1)求sin2x的值;
(2)求$\frac{cos2x}{\sqrt{2}sin(x+\frac{π}{4})•(1-2si{n}^{2}\frac{x}{2})}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.对任意x∈[-1,1],不等式-4≤x3+3|x-a|≤4恒成立,则实数a的取值范围为(  )
A.[-$\frac{2}{3}$,$\frac{2}{3}$]B.[-$\frac{1}{3}$,$\frac{1}{3}$]C.[0,$\frac{2}{3}$]D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知x>0,xy=4,则log2x•log2(4y)的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f(x)=$\left\{\begin{array}{l}{sinπx,x≤0}\\{2f(x-1),x>0}\end{array}\right.$,则f($\frac{4}{3}$)等于(  )
A.2B.-2C.2$\sqrt{3}$D.-2$\sqrt{3}$

查看答案和解析>>

同步练习册答案