精英家教网 > 高中数学 > 题目详情
5.若角θ的终边经过两直线x-y+2=0与x+y-6=0的交点P.
(1)求角θ的正切值;
(2)求经过点P且与角θ的终边垂直的直线方程.

分析 (1)联立$\left\{\begin{array}{l}{x-y+2=0}\\{x+y-6=0}\end{array}\right.$,求出P(2,4),利用三角函数定义能求出角θ的正切值.
(2)求出角θ的终边的斜率,由此利用直线垂直的性质能求出经过点P且与角θ的终边垂直的直线方程.

解答 解:(1)∵角θ的终边经过两直线x-y+2=0与x+y-6=0的交点P,
∴联立$\left\{\begin{array}{l}{x-y+2=0}\\{x+y-6=0}\end{array}\right.$,得x=2,y=4,∴P(2,4),
∴tanθ=$\frac{y}{x}=\frac{4}{2}=2$.
(2)角θ的终边过P(2,4),O(0,0),∴角θ的终边的斜率${k}_{OP}=\frac{4}{2}=2$,
∴经过点P且与角θ的终边垂直的直线方程为:
y-4=-$\frac{1}{2}$(x-2),
整理,得x+2y-10=0.

点评 本题考查角的正切值的求法,考查直线方程的求法,是基础题,解题时要认真审题,注意直线垂直的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.己知函数f(x)=$\frac{2x+3}{x-1}$,若函数y=g(x)与y=f-1(x+1)的图象关于直线y=x对称,则g(3)的值为$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆的中心在原点,两焦点F1,F2在x轴上,且过点A(-4,3).
(1)若F1A⊥F2A,求椭圆的标准方程.
(2)在(1)的条件下,若点P为椭圆上一点,且满足∠F1PF2=120°,求△PF1F2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设2sin2α=-sinα,α∈($\frac{π}{2}$,π),则tan2α的值是$\frac{\sqrt{15}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求下列函数的定义域:
(1)y═$\frac{\sqrt{6-{x}^{2}}}{\sqrt{sinx}}$
(2)y=$\sqrt{sinx-\frac{1}{2}}$+lg(2cosx-$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系xOy中,己知直线y=$\sqrt{3}$被圆C1:x2+y2+8x+F=0截得的弦长为2.
(1)求圆C1的方程;
(2)设圆C1和x轴相交于A,B两点,点P为圆C1上不同于A,B的任意一点,直线PA,PB交y轴于M,N两点.当点P变化时,以MN为直径的圆C2是否经过圆C1内一定点?请证明你的结论;
(3)若△RST的顶点R在直线x=-1上,S,T在圆C1上,且直线RS过圆心C1,∠SRT=30°,求点R的纵坐标的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数在区间(0,+∞)上是减函数的是(  )
A.f(x)=3x-2B.f(x)=9-x2C.$f(x)=\frac{1}{x-1}$D.f(x)=log2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设直线y=t与曲线C:y=x(x-3)2的三个交点分别为A(a,t),B(b,t),C(c,t),且a<b<c.现给出如下结论:
①abc的取值范围是(0,4);
②a2+b2+c2为定值;
③c-a有最小值无最大值.
其中正确结论的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x2+2ax+2,x∈[-5,5].
(Ⅰ)当a=-1时,求函数f(x)的最大值和最小值;
(Ⅱ)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.

查看答案和解析>>

同步练习册答案