精英家教网 > 高中数学 > 题目详情
13.(1)已知对于任意非零实数a和b,不等式|3a+b|+|a-b|≥|a|(|x-1|+|x+1|)恒成立,试求实数x的取值范围;
(2)已知不等式|2x-1|<1的解集为M,若a,b∈M,试比较$\frac{1}{ab}$+1与$\frac{1}{a}+\frac{1}{b}$的大小.(并说明理由)

分析 (Ⅰ)利用绝对值不等式的几何意义推出|3a+b|+|a-b|≥4|a|,转化所求解不等式为|x+1|+|x-1|≤4,推出结果即可.
(Ⅱ)利用作差法,结合已知条件推出结果即可.

解答 (Ⅰ)解:|3a+b|+|a-b|≥|3a+b+a-b|=4|a|,当且仅当(3a+b)(a-b)≥0时取等号,
只需:4|a|≥|a|(|x+1|+|x-1|),由于a≠0,只需|x+1|+|x-1|≤4,表示数轴上的点与-1,1的距离之和小于等于4,
所以:x的取值范围为:[-2,2];
(Ⅱ)解得:M=(0,1),a∈M,b∈M知:$\frac{1}{ab}+1-\frac{1}{a}-\frac{1}{b}=\frac{ab+1-a-b}{ab}=\frac{(a-1)(b-1)}{ab}$>0,
即$\frac{1}{ab}+1>\frac{1}{a}+\frac{1}{b}$.

点评 本题考查绝对值不等式的几何意义,不等式的解法,函数恒成立条件的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知$\overrightarrow{m}$=($\frac{1}{2}$sinx,$\frac{\sqrt{3}}{2}$),$\overrightarrow{n}$=(cosx,${cos}^{2}x-\frac{1}{2}$)(x∈R),且函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(1)求f(x)的对称轴方程;
(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f(A)=0,sinB=$\frac{4}{5}$,a=$\sqrt{3}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}满足:a1=-13,a6+a8=-2,且an-1=2an-an+1(n≥2),则数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前13项和为(  )
A.$\frac{1}{13}$B.-$\frac{1}{13}$C.$\frac{1}{11}$D.-$\frac{1}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=-$\frac{4}{5}$x-cosx在[0,$\frac{π}{4}$]上的最大值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数$f(x)=kx(x∈[\frac{1}{e},e])$,$g(x)={(\frac{1}{e})^{\frac{x}{2}}}$,若f(x),g(x)图象上分别存在点M,N,使得M,N关于直线y=x对称,则实数k的取值范围为(  )
A.$[-\frac{1}{e},e]$B.$[-\frac{2}{e},2e]$C.$[-\frac{3}{e},3e]$D.$(-\frac{2}{e},2e)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知球的直径SC=2$\sqrt{5}$,A,B是该球球面上的两点,若AB=2,∠ASC=∠BSC=45°,则棱锥S-ABC的表面积为(  )
A.22B.16C.12D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,三棱柱ABE-DCF中,△EAB是正三角形,四边形ABCD是矩形,且EA=2,BC=2$\sqrt{3}$,EC=4.
(1)求证:平面EAB⊥平面ABCD;
(2)若点P在线段EA上,且PA=λEA(0<λ<1),当三棱锥B-APD的体积为$\frac{3}{2}$时,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=9x3-ln|x|的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=x+$\frac{1}{x+2}$的定义域是{x|x≠-2}.

查看答案和解析>>

同步练习册答案