精英家教网 > 高中数学 > 题目详情
1.已知M是球O半径OP的中点,过M做垂直于OP的平面,截球面得圆O1,则以圆O1为大圆的球与球O的体积比是$\frac{3}{8}\sqrt{3}$.

分析 由题意,设出圆M的半径,球的半径,二者与OM构成直角三角形,求出半径关系,然后可求以圆O1为大圆的球与球O的体积比.

解答 解:由题意,设出圆M的半径r,球的半径R,
由勾股定理得R2=r2+($\frac{R}{2}$)2,r=$\frac{\sqrt{3}}{2}$R.
∴以圆O1为大圆的球与球O的体积比是$\frac{3}{8}\sqrt{3}$.
故答案为:$\frac{3}{8}\sqrt{3}$.

点评 本题是基础题,考查球的体积的计算,理解并能够应用小圆的半径、球的半径、以及球心与圆心的连线的关系,是本题的突破口,解题重点所在,仔细体会.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知空间两不同直线m、n,两不同平面α、β,下列命题正确的是(  )
A.若m∥α且n∥α,则m∥nB.若m⊥β且m⊥n,则n∥β
C.若m⊥α且m∥β,则α⊥βD.若m不垂直于α,且n?α则m不垂直于n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.直线y=kx+3与圆(x-2)2+(y-3)2=4相交于M,N两点,若|MN|≥2,则k的取值范围是(  )
A.$[-\sqrt{3},\sqrt{3}]$B.$(-∞,-\sqrt{3}]∪[\sqrt{3},+∞)$C.$[-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}]$D.$[-\frac{2}{3},0]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若复数$\frac{a+i}{1+2i}$(a∈R)为纯虚数,其中i为虚数单位,则a=(  )
A.2B.3C.-2D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知a>b>0,ab=ba,有如下四个结论:
①b<e;②b>e;③?a,b满足a•b<e2;④a•b>e2
则正确结论的序号是(  )
A.①③B.②③C.①④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=sin(ωx-$\frac{π}{6}$)+$\frac{1}{2}$(ω>0),且f(a)=-$\frac{1}{2}$,f(β)=$\frac{1}{2}$,若|α-β|的最小值为$\frac{3π}{4}$,则函数的单调递增区间为(  )
A.[-$\frac{π}{2}$+2kπ,π+2kπ],k∈ZB.[-$\frac{π}{2}$+3kπ,π+3kπ],k∈Z
C.[π+2kπ,$\frac{5π}{2}$+2kπ],k∈ZD.[π+3kπ,$\frac{5π}{2}$+3kπ],k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若函数y=f(x)的定义域为{x|-2≤x≤3,且x≠2},值域为{y|-1≤y≤2,且y≠0},则y=f(x)的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=sin(ωx+φ)$({ω>0,|φ|<\frac{π}{2}})$一个周期的图象(如图),则这个函数的解析式为f(x)=$sin(2x+\frac{π}{6})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数f(x)(x∈R)满足f(x-π)=f(x)+sinx,当0≤x≤π,f(x)=1时,则$f({-\frac{13π}{6}})$=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{3}{2}$D.$-\frac{3}{2}$

查看答案和解析>>

同步练习册答案