精英家教网 > 高中数学 > 题目详情
已知函数f(x)=m•9x-3x,若存在非零实数x0,使得f(-x0)=f(x0)成立,则实数m的取值范围是(  )
A、m
1
2
B、0<m<
1
2
C、0<m<2
D、m≥2
考点:指数函数综合题
专题:函数的性质及应用
分析:由题意可得m•9x-3x =m•9-x-3-x 有解,可得
1
m
=3x+3-x ,利用基本不等式求得m的范围.
解答: 解:由题意可得m•9x-3x =m•9-x-3-x 有解,即m(9x-9x )=(3x-3-x )有解.
可得
1
m
=3x+3-x ≥2 ①,求得0<m≤
1
2

再由x0为非零实数,可得①中等号不成立,故0<m<
1
2

故选:B.
点评:本题主要考查指数函数的综合应用,基本不等式的应用,注意检验等号成立条件是否具备,体现了转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

f(x)=
3
2
sin2x-sin2x+
1
2

(1)求f(x)最小周期
(2)x∈[0,π]求最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△PAB和△QAC是两个全等的直角三角形,其中PA=AC=2AB=2CQ=4,∠PBA=∠AQC=90°.将△PAB绕AB旋转一周,当P,Q两点间的距离在[
10
,2
7
]内变化时,动点P所形成的轨迹的长度是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=asinx+bx+4(a,b为实数),且f(ln10)=5,则f(ln
1
10
)的值是(  )
A、-5B、-3
C、3D、随a,b取不同值而取不同值

查看答案和解析>>

科目:高中数学 来源: 题型:

若偶函数f(x)满足f(x-1)=f(x+1),在x∈[0,1]时,f(x)=x2,则关于x的方程f(x)=(
1
10
x在[0,4]上根的个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面内三点A(3,0)、B(0,3)、C(cosα,sinα),若
AC
BC
=-1,求
2sin2α+sin2α
1+tanα
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点O,长轴在x轴上,离心率为
1
2
,且椭圆C上一点到两个焦点的距离之和为4.
(Ⅰ)椭圆C的标准方程.
(Ⅱ)已知P、Q是椭圆C上的两点,若OP⊥OQ,求证:
1
|OP|2
+
1
|OQ|2
为定值.
(Ⅲ)当
1
|OP|2
+
1
|OQ|2
为(Ⅱ)所求定值时,试探究OP⊥OQ是否成立?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>b≥1,集合A={x|x∈Z,0<x<a},B={x|x∈Z,-b<x<b},记“从集合A中任取一个元素x,x∉B”为事件M,“从集合A中任取一个元素x,x∈B”为事件N.给定下列三个命题:
①当a=5,b=3时,P(M)=P(N)=
1
2

②若P(M)=1,则a=2,b=1;
③P(M)+P(N)=1恒成立.
其中,为真命题的是(  )
A、①②B、①③C、②③D、①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=log3x,
(1)求f(x)的解析式;
(2)解不等式f(x)≤2.

查看答案和解析>>

同步练习册答案