精英家教网 > 高中数学 > 题目详情
15.在△ABC中,a=3,b=4,sin A=$\frac{3}{5}$,则sin B=$\frac{4}{5}$.

分析 利用正弦定理即可得出.

解答 解:由正弦定理可得:$\frac{a}{sinA}=\frac{b}{sinB}$,可得sinB=$\frac{4×\frac{3}{5}}{3}$=$\frac{4}{5}$.
故答案为:$\frac{4}{5}$.

点评 本题考查了正弦定理,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知等差数列{an},a2+a3+a4=15,an>0,且a2,a3+4,a4+20为等比数列{bn}的前三项,
(1)求{an},{bn}的通项公式.
(2)设数列dn=$\frac{2}{{a}_{n}{a}_{n+1}}$的前n项和为Tn,求Tn
(3)若数列cn=an•bn,求数列{cn}的前n和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图是一个程序框图的一部分,若开始输入的数字为t=10,则输出的结果是(  )
A.20B.50C.140D.150

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如表1:
年份x20112012201320142015
储蓄存款y(千亿元)567810
为了研究计算的方便,工作人员将上表的数据进行了处理,t=x-2010,z=y-5得到下表2:
时间代号t12345
z01235
(Ⅰ)求z关于t的线性回归方程;
(Ⅱ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?
(附:对于线性回归方程$\hat y=\hat bx+\hat a$,其中$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知a、b、c是直线,α是平面,给出下列命题:
①若a∥b,b⊥c,则a⊥c;   
②若a⊥b,b⊥c,则a∥c;
③若a∥α,b?α,则a∥b;  
④若a⊥α,b?α,则a⊥b;
⑤若a与b异面,则至多有一条直线与a、b都垂直.
⑥若a?α,b?α,a⊥c,b⊥c,则a∥b.
其中真命题是①④.(把符合条件的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=Asin(ωx+ϕ)(A>0,ω>0)的图象与直线y=a(0<a<A)的三个相邻交点的横坐标分别是2,4,8,则f(x)的单调递减区间是(  )
A.[6kπ,6kπ+3](k∈Z)B.[6kπ-3,6kπ](k∈Z)C.[6k,6k+3](k∈Z)D.[6k-3,6k](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<π)的一段图象如图所示.
(1)求函数y=f(x)的解析式;
(2)将函数y=f(x)的图象向右平移$\frac{π}{8}$个单位,得到y=g(x)的图象,求直线$y=\sqrt{6}$与函数$y=\sqrt{2}g(x)$的图象在(0,π)内所有交点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在[-3,3]上随机地取一个数b,则事件“直线y=x+b与圆x2+y2-2y-1=0有公共点”发生的概率为(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,网格纸上小正方形的边长是1,在其上用粗线画出了某空间几何体的三视图,则这个空间几何体的体积为(  )
A.πB.C.D.

查看答案和解析>>

同步练习册答案