精英家教网 > 高中数学 > 题目详情
3.某学校为了增强学生对消防安全知识的了解,举行了一次消防安全知识竞赛.其中一道题是连线题,要求将3种不同的消防工具与它们的用途一对一连线,规定:每连对一条得2分,连错一条扣1分,参赛者必须把消防工具与用途一对一全部连起来.
(Ⅰ)设三种消防工具分别为A,B,C,其用途分别为a,b,c,若把 连线方式表示为$(\begin{array}{l}{A^{\;}}{B^{\;}}C\\{b^{\;}}{c^{\;}}a\end{array})$,规定第一行A,B,C的顺序固定不变,请列出所有连线的情况;
(Ⅱ)求某参赛者得分为0分的概率.

分析 (Ⅰ)结合题意作出所有连线的情况即可;
(II)参赛者得0分,说明该参赛者恰连对一条,从而求概率.

解答 解:(I)所有连线情况如下$(\begin{array}{l}{A^{\;}}{B^{\;}}C\\{a^{\;}}{b^{\;}}c\end{array})$$(\begin{array}{l}{A^{\;}}{B^{\;}}C\\{a^{\;}}{c^{\;}}b\end{array})$$(\begin{array}{l}{A^{\;}}{B^{\;}}C\\{c^{\;}}{b^{\;}}a\end{array})$$(\begin{array}{l}{A^{\;}}{B^{\;}}C\\{b^{\;}}{a^{\;}}c\end{array})$$(\begin{array}{l}{A^{\;}}{B^{\;}}C\\{b^{\;}}{c^{\;}}a\end{array})$$(\begin{array}{l}{A^{\;}}{B^{\;}}C\\{c^{\;}}{a^{\;}}b\end{array})$…(6分)
注:每列对一个给(1分)
(II)参赛者得0分,说明该参赛者恰连对一条
所以该参赛者得0分的概率为$P=\frac{3}{6}=\frac{1}{2}$…(12分)

点评 解决的关键是对于古典概型概率的运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.函数f(x)=$\frac{xln(x-1)}{x-2}$,x∈[1.5,3]的值域为(0,3ln2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知$\overrightarrow{a}$、$\overrightarrow{b}$均为单位向量,(2$\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-2$\overrightarrow{b}$)=-$\frac{3\sqrt{3}}{2}$,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为(  )
A.$\frac{5π}{6}$B.$\frac{3π}{4}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.掷三颗骰子(各面上分别标有数字1至6的质地均匀的正方体玩具),恰有一颗骰子掷出的点数可以被3整除的概率为(  )
A.$\frac{4}{9}$B.$\frac{5}{9}$C.$\frac{8}{27}$D.$\frac{19}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,茎叶图记录了某城市甲、乙两个观测点连续三天观测到的空气质量指数(AQI).乙观测点记录中有一个数字模糊无法确认,已知该数是0,1,…,9中随机的一个数,并在图中以a表示.
(Ⅰ)若甲、乙两个观测点记录数据的平均值相同,求a的值;
(Ⅱ)当a=2时,分别从甲、乙两观测点记录的数据中各随机抽取一天的观测值,记这两观测值之差的绝对值为X,求|X|≤2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在四棱锥P-ABCD中,PA⊥底面ABCD,AB∥CD,AB⊥BC,PA=AB=BC=$\frac{1}{2}$CD.
(Ⅰ)求证:面PAD⊥面PAC;
(Ⅱ)若AB=1,求三棱锥D-PBC的高.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若b<a<0,则下列不等式一定成立的是(  )
A.a3<b3B.ab>b2C.ac2>bc2D.$\frac{1}{a}$<$\frac{1}{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示的几何体是由等边三角形ABC的底面的棱柱被平面DEF所截得,已知FA⊥平面ABC,AB=2,BD=1,AF=2,CE=3,O为AB的中点.
(1)求证:OC⊥DF;
(2)求平面DEF与平面ABC相交所成锐角二面角的大小;
(3)求多面体ABC-FDE的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)在y轴上的一个顶点为M,两个焦点分别是F1,F2,∠F1MF2=120°,△MF1F2的面积为$\sqrt{3}$.
(1)求椭圆G的方程;
(2)过椭圆G长轴上的点P(t,0)的直线l与椭圆O:x2+y2=1相切于点Q(Q与P不重合),交椭圆G于A,B两点,若|AQ|=|BP|,求实数t的值.

查看答案和解析>>

同步练习册答案