精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=x2-ax+4满足a∈[-1,7],那么对于a,使得f(x)≥0在x∈[1,4]上恒成立的概率为(  )
A.$\frac{3}{8}$B.$\frac{1}{2}$C.$\frac{5}{8}$D.$\frac{3}{4}$

分析 由f(x)≥0在x∈[1,4]上恒成立,可得a≤x+$\frac{4}{x}$在x∈[1,4]上恒成立,可得a∈[-1,4]求出区间[-1,4]上构成的区域长度,再求出在区间[[-1,7]上任取一个数构成的区域长度,再求两长度的比值.

解答 解:由f(x)≥0在x∈[1,4]上恒成立,可得a≤x+$\frac{4}{x}$在x∈[1,4]上恒成立,∴a≤4
又a∈[-1,7],∴a∈[-1,4],
∴使得f(x)≥0在x∈[1,4]上恒成立的概率为$\frac{4+1}{7+1}$=$\frac{5}{8}$,
故选:C.

点评 本题主要考查概率的建模和解模能力,本题是长度类型,思路是先求得试验的全部构成的长度和构成事件的区域长度,再求比值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知U=R,集合A={x|x≥0},B={x|2≤x≤4},则A∩(∁UB)=(  )
A.{x|x≤0}B.{x|2≤x≤4}C.{x|0<x≤2或x≥4}D.{x|0≤x<2或x>4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如果lg3,lg(sinx-$\frac{1}{2}$),lg(1+y)依次构成等差数列,那么(  )
A.y有最小值为-1,最大值为-$\frac{11}{12}$B.y有最大值为1,无最小值
C.y无最小值,有最大值为-$\frac{11}{12}$D.y有最小值为-1,最大值为1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知向量$\overrightarrow{OA}$=(4,3),$\overrightarrow{OB}$=(2,-1),O为坐标原点,P是直线AB上一点.
(Ⅰ)若点P是线段AB的中点,求向量$\overrightarrow{OA}$与向量$\overrightarrow{OP}$夹角θ的余弦值;
(Ⅱ)若点P在线段AB的延长线上,且|${\overrightarrow{AP}}$|=$\frac{3}{2}$|${\overrightarrow{PB}}$|,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.阅读如图所示的程序框图,若输入的k=4,则输出的S=(  )
A.15B.16C.31D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\left\{\begin{array}{l}|{{{log}_2}x}|,0<x≤2\\ sin\frac{πx}{4},2<x≤10\end{array}$.
(I)设函数g(x)=f(x)-1,求函数g(x)的零点;
(II)若函数f(x1)=f(x2)=f(x3)=f(x4),且0<x1<x2<x3<x4≤10,求$\frac{{({{x_3}-1})({{x_4}-1})}}{{{x_1}•{x_2}}}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\left\{\begin{array}{l}{f(x+2)(x<2)}\\{lo{g}_{3}x(x≥2)}\end{array}\right.$,则f(-1)的值为(  )
A.1B.-1C.$\frac{1}{3}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某车间生产甲、乙两种产品.已知生产甲产品1桶需要A原料1千克、B原料2千克;生产乙产品1桶需要A原料3千克、B原料1千克.生产计划中规定每天消耗的A原料不超过21千克、B原料不超过12千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元,每天生产甲、乙产品各多少桶可以获得最大利润?最大利润是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an}是等差数列,且a1+a5+a9=21,则a4+a6=14.

查看答案和解析>>

同步练习册答案