精英家教网 > 高中数学 > 题目详情
1.已知四棱锥A-BCDE中,侧面△ABC为等边三角形,BE=AB,CD=2AB,CD∥BE,且CD⊥平面ABC,F为棱AD的中点.
(1)求证:EF∥平面ABC;
(2)求证:平面ADE⊥平面ACD;
(3)若等边△ABC的边长为a,求四棱锥A-BCDE的体积.

分析 (1)取AC中点G,连接FG,BG,推导出FGBE为平行四边形,从而EF∥BG,由此能证明EF∥面ABC.
(2)推导出BG⊥AG,CD⊥BG,从而BG⊥面ADC,进而EF⊥面ADC,由此能证明面ADE⊥面ADC.
(3)取BC的中点M,连接AM,推导出AM为四棱锥A-BCDE的高,由此能求出四棱锥A-BCDE的体积.

解答 证明:(1)取AC中点G,连接FG,BG,
∵F,G分别是AD,AB的中点,
∴FG∥CD,且$FG=\frac{1}{2}CD$,
∵BE∥CD,∴FG与BE平行且相等,∴FGBE为平行四边形,
∴EF∥BG.又EF?面ABC,BG?面ABC,
∴EF∥面ABC.
(2)∵△ABC为等边三角形,∴BG⊥AG,
又∵CD⊥面ABC,BG?面ABC,∴CD⊥BG,
∴BG垂直于面ADC的两条相交直线AC,CD,
∴BG⊥面ADC,∵EF∥BG,∴EF⊥面ADC,
∵EF?面ADE,∴面ADE⊥面ADC.
解:(3)取BC的中点M,连接AM,
∵△ABC为等边三角形,∴AM⊥BC,
又AM⊥CD,AM⊥平面BCDE,故AM为四棱锥A-BCDE的高,
∵AB=a,∴$AM=\frac{{\sqrt{3}}}{2}a$,又${S_{BCDE}}=\frac{a+2a}{2}×a=\frac{3}{2}{a^2}$,
∴${V_{A-BCDE}}=\frac{1}{3}×\frac{3}{2}{a^2}×\frac{{\sqrt{3}}}{2}a=\frac{{\sqrt{3}}}{4}{a^3}$.

点评 本题考查线面平行、面面垂直的证明,考查四棱锥的体积的求法,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,考查创新意识、应用意识,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=|lnx|,$g(x)=\left\{\begin{array}{l}0\\|{{x^2}-4}|-2\end{array}\right.$$\begin{array}{l}({0<x≤1})\\({x>1})\end{array}$则方程|f(x)+g(x)|=1实根的个数为(  )
A.2个B.4个C.6个D.8个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数$f(x)=sin(2x+\frac{π}{3})+\sqrt{3}-2\sqrt{3}{cos^2}$x+1
(1)求f(x)的最小正周期及其图象的对称中心;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知平面向量$\overrightarrow a=(\;3,\;1\;),\;\overrightarrow b=(\;t,\;-3\;)$,且$\overrightarrow a⊥\overrightarrow b$,则t=(  )
A.-1B.1C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:
质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)
频数62638228
(1)作出这些数据的频率分布直方图:
(2)估计这种产品质量指标值的中位数、平均数及方差(同一组中的数据用该组区间的中点值作代表)(精确到0.01);
(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.由①y=2x+5是一次函数;②y=2x+5的图象是一条直线;③一次函数的图象是一条直线.写一个“三段论”形式的正确推理,则作为大前提、小前提和结论的分别是(  )
A.②①③B.③②①C.①②③D.③①②

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中的内角A,B,C所对的边长分别为a,b,c,若$\sqrt{5}$b=4c,B=2C.
(1)求cosB;
(2)若c=5,点D为BC上一点,且BD=6,求△ADC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如果一个三位正整数如“a1a2a3”满足a1<a2,且a2>a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为(  )
A.204B.240C.729D.920

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.${∫}_{-1}^{1}$|x|dx等于1.

查看答案和解析>>

同步练习册答案