精英家教网 > 高中数学 > 题目详情
18.在△ABC中,角A,B,C的对边分别为a,b,c.已知a=2,c=$\sqrt{2}$,cosA=-$\frac{{\sqrt{2}}}{4}$.则b的值为(  )
A.1B.$\sqrt{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{6}}}{2}$

分析 由题意和同角三角函数基本关系可得sinA,再由正弦定理可得sinC,进而可得cosC,可得cosB,由余弦定理可得.

解答 解:∵在△ABC中a=2,c=$\sqrt{2}$,cosA=-$\frac{{\sqrt{2}}}{4}$,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{\sqrt{14}}{4}$,
由正弦定理可得sinC=$\frac{csinA}{a}$=$\frac{\sqrt{2}×\frac{\sqrt{14}}{4}}{2}$=$\frac{\sqrt{7}}{4}$,
∴cosC=$\sqrt{1-si{n}^{2}C}$=$\frac{3}{4}$,
∴cosB=-cos(A+C)=sinAsinC-cosAcosC
=$\frac{\sqrt{14}}{4}$×$\frac{\sqrt{7}}{4}$-(-$\frac{{\sqrt{2}}}{4}$)×$\frac{3}{4}$=$\frac{5\sqrt{2}}{8}$,
∴由余弦定理可得b=$\sqrt{4+2-2×2×\sqrt{2}×\frac{5\sqrt{2}}{8}}$=1,
故选:A.

点评 本题考查正余弦定理解三角形,涉及同角三角函数基本关系和和差角的三角函数公式,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知f(x)是定义在[-1,1]上的奇函数,若a,b∈[-1,1],a+b≠0时,都有(f(a)+f(b))(a+b)>0成立,且f(1)=3.
(1)判断f(x)在区间[-1,1]上的单调性,并给出证明;
(2)解不等式:f(x+$\frac{1}{2}$)<f($\frac{1}{x-1}$);
(3)若f(x)+3≥-m2-2tm对所有的x∈[-1,1],t∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设数列{an}各项均为正值,且前n项和Sn=$\frac{1}{2}$(an+$\frac{1}{{a}_{n}}$),则此数列的通项an应为(  )
A.an=$\sqrt{n+1}$-$\sqrt{n}$B.an=$\sqrt{n}$-$\sqrt{n-1}$C.an=$\sqrt{n+2}$-$\sqrt{n+1}$D.an=2$\sqrt{n}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=Asin(ωx+φ)(其中A>0,ω>0,0<φ<$\frac{π}{2}$)的图象与X轴的交点中,相邻两个交点之间的距离为$\frac{π}{2}$.若M($\frac{2π}{3}$,-2)为图象上一个最低点.
(1)求f(x)的解析式;
(2)求函数y=f(x)图象的对称轴方程和对称中心坐标.
(3)求f(x)的单减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则此函数的解析式为f(x)=2sin(2x+$\frac{π}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4,从袋中随机取出两个球,则取出的球的编号之和不大于4的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.i为虚数单位,z=$\frac{5i}{1+2i}$,则|$\overline{z}$|=(  )
A.$\sqrt{5}$B.5C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若cos2x>sin2x,x∈[0,π],则x的取值范围是(  )
A.[0,$\frac{π}{4}$)∪[$\frac{π}{2}$,$\frac{3}{4}$π]B.[0,$\frac{π}{4}$)∪($\frac{3}{4}π$,π]C.[0,$\frac{π}{4}$)∪($\frac{π}{2}$,$\frac{3}{4}$π]D.[$\frac{π}{2}$,π]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.将函数f(x)=cos(2x+$\frac{π}{6}$)的图象沿x向右平移$\frac{π}{6}$个单位得到函数y=g(x)的图象,若P(x0,$\frac{1}{2}$)是函数y=g(x)的图象上一点,则sin($\frac{2π}{3}$-2x0)=(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$-\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案