精英家教网 > 高中数学 > 题目详情
7.若直线2ax-by+2=0(a>0,b>0)平分圆x2+y2+2x-4y+1=0,则$\frac{1}{a}$+$\frac{4}{b}$的最小值为9.

分析 利用直线2ax-by+2=0(a>0,b>0)始终平分圆x2+y2+2x-4y+1=0的圆周,可得圆的圆心(-1,2)在直线2ax-by+2=0(a>0,b>0)上,再利用“1”的代换,结合基本不等式,即可求出$\frac{1}{a}$+$\frac{4}{b}$的最小值.

解答 解:由题意,圆的圆心(-1,2)在直线2ax-by+2=0(a>0,b>0)上
∴-2a-2b+2=0(a>0,b>0)
∴a+b=1,
∴$\frac{1}{a}$+$\frac{4}{b}$=(a+b)($\frac{1}{a}$+$\frac{4}{b}$)=5+$\frac{b}{a}$+$\frac{4a}{b}$≥5+2$\sqrt{\frac{b}{a}•\frac{4a}{b}}$=9.
当且仅当$\frac{b}{a}$=$\frac{4a}{b}$,即a=$\frac{1}{3}$,b=$\frac{2}{3}$时,$\frac{1}{a}$+$\frac{4}{b}$的最小值为9.
故答案为:9.

点评 本题考查圆的对称性,考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=-(x-2m)(x+m+3)(其中m<-1),g(x)=2x-2.
(1)若命题“log2g(x)<1”是真命题,求x的取值范围;
(2)设命题p:?x∈(1,+∞),f(x)<0或g(x)<0;,若P是真命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数y=f(x),则集合{(x,y)|y=f(x),a≤x≤b}∩{(x,y)|x=2}的子集可能有(  )
A.0个B.1个C.1个或2个D.0个或1个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知x,y∈R,则命题“若x2+y2=0,则x=0且y=0”的否命题是 (  )
A.若x2+y2≠0,则x,y都不为0.B.若x2+y2≠0,则x,y不都为0.
C.若x2+y2≠0,则x≠0且y≠0D.若x2+y2≠0,则x=0且y=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=3x2-2ax-b,其中a,b是实数.
(1)若不等式f(x)≤0的解集是[0,6],求ab的值;
(2)若b=3a,对任意x∈R,都有f(x)≥0,且存在实数x,使得f(x)≤2-$\frac{2}{3}$a,求实数a的取值范围;
(3)若方程有一个根是1,且a,b>0,求$\frac{1}{2a+1}+\frac{1}{b+2}$的最小值,及此时a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知3x=2,log3$\frac{9}{4}$=y,则2x+y的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.计算
(1)log2$\sqrt{\frac{7}{48}}$+log212-$\frac{1}{2}$log242
(2)$\root{3}{(-2)^{3}}-(\frac{1}{3})^{0}$+0.25${\;}^{\frac{1}{2}}$×($\frac{-1}{\sqrt{2}}$)-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设全集为R,A={x|3≤x<7},B={x|2<x<10},求∁R(A∪B)及(∁RA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若不存在实数x使不等式|x-1|+|x-3|≤a2-2a-1成立,则实数a的取值范围是(  )
A.a<-1或a>3B.-1<a<3C.-1≤a≤3D.a≤-1或a≥3

查看答案和解析>>

同步练习册答案