精英家教网 > 高中数学 > 题目详情

【题目】对于任意给定的无理数及实数,圆周上的有理点的个数情况是()

A. 至多一个 B. 至多两个 C. 至少两个,个数有限 D. 无数多个

【答案】B

【解析】

对于点,用表示上述圆周上有理点的个数.

首先,作一个符合条件的圆,其上至少有两个有理点.

为此,取点,线段中垂线的方程为.在垂线上取点,再取.则以为圆心、为半径的圆周上至少有这两个有理点.

其次,说明对于任何无理点以及任意正实数,都有.

为此,假设有无理点及正实数,在以为圆心、为半径的圆周上至少有三个有理点为有理数,).则

.

据前一等式得,①

据后一等式得.②

为有理数.

,则由式①得.

为无理数得.

共点,矛盾.

同理,若,可得共点,矛盾.

,由式①、②消去

为有理数.

为无理数,所以,.

从而,.

三点共线,这与三点共圆矛盾.

因此,所设不真,即这种圆上至多由两个有理点.

于是,对于所有的无理点及所有正实数的最大值为2. 选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数,且),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.

1)写出曲线和直线的直角坐标方程;

2)若直线轴交点记为,与曲线交于两点,Qx轴下方,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中,a为实数.

(1)当函数的图像在上与x轴有唯一的公共点时,求实数a的取值范围;

(2)当时,求函数上的最大值与最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,平面,AP=AD=2AB=2BC,点在棱上.

(Ⅰ)求证:

(Ⅱ)当平面时,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),上的动点,点满足点的轨迹为曲线.

(Ⅰ)求的普通方程;

(Ⅱ)在以为极点,轴的正半轴为极轴的极坐标系中,直线交于两点,交轴于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,锐角的三边互不相等,其垂心为是边的中点,直线的外接圆交的外接圆于,直线的外接圆、的外接圆分别交于证明:

(1)平分

(2)三线共点。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求满足下列条件的最小正整数t,对于任何凸n边形,只要,就一定存在三点,使的面积不大于凸n边形面积的.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正四面体ABCD的棱长为2,球O与四面体的面ABC和面DBC都相切,其切点分别在△ABC和△DBC内(含边界),且球O与棱AD相切.

(1)证明:球O的球心在棱AD的中垂面上;

(2)求球O的半径的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20135月,华人数学家张益唐的论文《素数间的有界距离》在《数学年刊》上发表,破解了困扰数学界长达一个多世纪的难题,证明了孪生素数猜想的弱化形式,即发现存在无穷多差小于7000万的素数对.这是第一次有人证明存在无穷多组间距小于定值的素数对.孪生素数猜想是希尔伯特在1900年提出的23个问题中的第8个,可以这样描述:存在无穷多个素数,使得是素数,素数对称为孪生素数.在不超过16的素数中任意取出不同的两个,则可组成孪生素数的概率为(

A.B.C.D.

查看答案和解析>>

同步练习册答案