精英家教网 > 高中数学 > 题目详情
5.下列函数中,最小正周期为π的是(  )
A.y=sin|x|B.y=|sinx|C.$y=sin\frac{x}{2}$D.$y=cos\frac{x}{4}$

分析 利用三角函数的周期性及其求法即可求得答案.

解答 解:对于A,∵y=sin|x|=$\left\{\begin{array}{l}{sinx}&{x≥0}\\{-sinx}&{x<0}\end{array}\right.$,
∴y=sin|x|不是周期函数,可排除A;
对于B,y=|sinx|是周期为π的函数,满足题意;
对于C,$y=sin\frac{x}{2}$,可得周期T=$\frac{2π}{\frac{1}{2}}$=4π,不满足题意;
对于D,$y=cos\frac{x}{4}$,可得周期T=$\frac{2π}{\frac{1}{4}}$=8π,不满足题意.
故选:B.

点评 本题考查三角函数的周期性及其求法,判断函数y=sin|x|不是周期函数是难点,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.若直线ax+by-1=0(a>0,b>0)经过曲线y=2+sinπx(0<x<2)的对称中心,则$\frac{2}{a}$+$\frac{1}{b}$的最小值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.定义在(0,+∞)上的增函数f(x)满足条件:f(xy)=f(x)f(y)对所有正实数x,y均成立,且f(2)=4.
(1)求f(1)和f(8)的值;
(2)解关于x的不等式:16f($\frac{1}{x-3}$)≥f(2x+1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设$a=\int_0^π{(cosx-sinx)dx}$,则二项式${({x^2}+\frac{a}{x})^6}$展开式中x3项的系数为(  )
A.-2B.20C.-160D.160

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线x-y+1=0经过椭圆S:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>o)$的一个焦点和一个顶点.如图,M,N分别是椭圆S的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k.
(Ⅰ)若直线PA平分线段MN,求k的值;
(Ⅱ)对任意k>0,求证:PA⊥PB.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图所示是一个几何体的三视图,则该几何体的表面积为26.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和Sn,满足Sn=2an-2n,bn=an+2.
(Ⅰ)求{an}的通项公式;
(Ⅱ)记cn=log2bn,数列$\{\frac{1}{{{c_n}{c_{n+1}}}}\}$的前n项和为Tn,证明${T_n}<\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,BC=a,AC=b,a,b是方程${x^2}-2\sqrt{3}x+2=0$的两个根,且2cosC=1.
求:(1)角C的度数;
(2)AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.cos20°•cos10°-sin20°sin10°=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步练习册答案