精英家教网 > 高中数学 > 题目详情
7.设等差数列{an}的前n项和为Sn,Sm-1=-2,Sm=0,Sm+1=3,则公差d=1,m=5.

分析 由an与Sn的关系可求得am+1与am,进而得到公差d,由前n项和公式及Sm=0可求得a1,再由通项公式及am=2可得m值.

解答 解:由题意知,Sm-1=-2,Sm=0,Sm+1=3,
则am=Sm-Sm-1=2,am+1=Sm+1-Sm=3,
所以等差数列{an}的公差d=am+1-am=1,
因为Sm=$\frac{m({a}_{1}+{a}_{m})}{2}$=0,所以a1=-am=-2,
则am=-2+(m-1)•1=2,解得m=5,
故答案为:1;5.

点评 本题考查等差数列的通项公式、前n项和公式及通项an与Sn的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.在△ABC中,sin2C=(sinA-sinB)2+sinAsinB,则C的值是(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.下列说法中,
(1)等差数列{an}的通项公式an是关于n的一次函数
(2)在△ABC中,sinA>sinB?a>b
(3)已知数列{an}的前n项和Sn是关于n的二次函数,则数列{an}一定是等差数列
(4)在△ABC中,$\overrightarrow{AB}•\overrightarrow{BC}$<0,则△ABC是钝角三角形
(5)在△ABC中,A=60°,a=$\sqrt{6}$,b=4,那么满足条件的△ABC有两解.
正确的序号为②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知a>b>c,a+b+c=0,方程ax2+bx+c=0的两根为x1,x2
(1)证明:-$\frac{1}{2}<\frac{b}{a}$<1;
(2)若x12+x1x2+x22=1,求x12-x1x2+x22的值;
(3)设函数f(x)=ax2+bx+c的图象与x轴交于A,B两点,求|AB|长度的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若复数(1+ai)2(i为虚数单位,a∈R)是纯虚数,则复数的模是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)={cos}^{2}(x+\frac{π}{12})$,$g(x)=1+\frac{1}{2}sin2x$.
(I)求函数h(x)=f(x)+g(x)的单调递增区间.
(II)设x=x0是函数y=f(x)图象的一条对称轴,求g(x0)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,A,B,C,D都在同一个与水平面垂直的平面内,B,D为两岛上的两座灯塔的塔顶.测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60°,AC=0.1km.求B,D的距离$\frac{{3\sqrt{2}+\sqrt{6}}}{20}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若$(2{x^2}-\frac{b}{x}{)^6}$的展开式中x3项的系数为20,则实数b的值为-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某射手射击5次,每次命中的概率为0.6,求五次中至少有三次中靶的概率.

查看答案和解析>>

同步练习册答案