精英家教网 > 高中数学 > 题目详情
10.已知:函数f(x)=ax2-bx+c,若f(x)的顶点坐标为(1,2),且f(0)=3,
(1)求a,b,c的值 
(2)若x∈[-1,2],求函数f(x)值域.

分析 (1)由已知可得$\left\{\begin{array}{l}\begin{array}{c}-\frac{b}{2a}=1\\ f(1)=2\\ f(0)=3\end{array}\right.\end{array}\right.$,即$\left\{\begin{array}{l}b=-2a\\ a-b+c=2\\ c=3\end{array}\right.$,解得a,b,c的值 
(2)分析x∈[-1,2]时函数的图象和性质,求出最值,进而可得函数的值域.

解答 解:(1)∵f(x)的顶点坐标为(1,2),且f(0)=3,
∴$\left\{\begin{array}{l}\begin{array}{c}-\frac{b}{2a}=1\\ f(1)=2\\ f(0)=3\end{array}\right.\end{array}\right.$,即$\left\{\begin{array}{l}b=-2a\\ a-b+c=2\\ c=3\end{array}\right.$…(3分)
解得 a=1,b=2,c=3 …(6分)
(2)函数f(x)=x2-2x+3的对称轴为x=1…(8分),
x∈[-1,2]时,fmin(x)=f(1)=2…(10分)
fmax(x)=f(-1)=6…(12分)
∴x∈[-1,2]时,值域为[2,6]…(14分)

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.设点A(-3,5)和B(2,15),在直线l:3x-4y+4=0上找一点P,使|PA|+|PB|为最小,则这个最小值为5$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知:函数$f(x)={log_2}\frac{1+x}{1-x}$的定义域为(-1,1);
(1)判断f(x)的奇偶性并予以证明;
(2)证明f(x)在(-1,1)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某程序框图如图所示,则该程序运行后输出的k的值是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列关系式中表述正确的是(  )
A.0∈{(0,0)}B.0∈∅C.0∈ND.{0}∈{x|x2=0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=a-$\frac{1}{{{2^x}+1}}$.
(1)若f(x)为奇函数,求a的值;
(2)证明:不论a为何值f(x)在R上都单调递增;
(3)在(1)的条件下,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某跨国饮料公司对全世界所有人均GDP(即人均纯收入)在0.5-8千美元的地区销售,该公司在对M饮料的销售情况的调查中发现:人均GDP处在中等的地区对该饮料的销售量最多,然后向两边递减.
(1)下列几个模拟函数中(x表示人均GDP,单位:千美元;y表示年人均M饮料的销量,单位:升),用哪个来描述人均饮料销量与地区的人均GDP的关系更合适?说明理由;
(A)f(x)=ax2+bx
(B)f(x)=logax+b
(C)f(x)=ax+b
(2)若人均GDP为2千美元时,年人均M饮料的销量为6升;人均GDP为4千美元时,年人均M饮料的销量为8升;把你所选的模拟函数求出来;
(3)因为M饮料在N国被检测出杀虫剂的含量超标,受此事件影响,M饮料在人均GDP不高于3千美元的地区销量下降5%,不低于5千美元的地区销量下降5%,其他地区的销量下降10%,根据(2)所求出的模拟函数,求在0.5-8千美元的地区中,年人均M饮料的销量最多为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=2+log2$\frac{1-x}{1+x}$
(1)求函数f(x)的定义域;
(2)若关于x的方程f(x)=log2k在区间(-1,-$\frac{1}{2}$)上有实根,求实数k的取值范围;
(3)问:函数g(x)=f(x)-(x+1)是否有零点?如果有,设为x0.请用二分法求出一个长度为$\frac{1}{4}$的区间(a,b).使x0∈(a,b).要求写出推理过程.如果没有,请说明理由.(注:区间[a,b)的长度为b-a)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,已知平行六面体ABCD-A′B′C′D′,化简下列各表达式,并在图中标出化简结果的向量:
(1)$\overrightarrow{AB}$+$\overrightarrow{BC}$;
(2)$\overrightarrow{AB}$+$\overrightarrow{AD}$+$\overrightarrow{AA′}$;
(3)$\overrightarrow{AB}$+$\overrightarrow{AD}$+$\frac{1}{2}$$\overrightarrow{CC′}$;
(4)$\frac{1}{3}$($\overrightarrow{AB}$+$\overrightarrow{AD}$+$\overrightarrow{AA′}$)

查看答案和解析>>

同步练习册答案