精英家教网 > 高中数学 > 题目详情
已知椭圆的标准方程为
x2
6-m
+
y2
m-1
=1

(1)若椭圆的焦点在x轴,求m的取值范围;
(2)试比较m=2与m=3时两个椭圆哪个更扁.
(1)由题意:
6-m>m-1
m-1>0
,得1<m<
7
2
(5分)
(2)当m=2时,椭圆
x2
4
+
y2
1
=1
的离心率e1=
3
2

当m=3时,椭圆
x2
3
+
y2
2
=1
的离心率e2=
3
3
e1

所以m=2时的椭圆更扁.(5分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

若椭圆
x2
a2
+
y2
b2
=1
(a>0,b>0)的两焦点关于直线y=x的对称点均在椭圆内部,则椭圆的离心率e的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知F1、F2是椭圆C:
x2
4
+y2=1
的两个焦点,P为椭圆C在第一象限上的一点,且
PF1
PF2
.则P到x=
5
3
3
的距离为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>0,b>0)的左、右焦点,椭圆上一点M满足∠MF1O=
π
3
,N为MF1的中点且ON⊥MF1,则椭圆的离心率为(  )
A.
3
-1
B.
3
2
C.2-
2
D.
2
-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线l与椭圆
x2
4
+
y2
3
=1
相交于两点A,B,弦AB的中点为(-1,1),则直线l的方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,A为椭圆
x2
a2
+
y2
b1
=1(a>b>0)上的一个动点,弦AB、AC分别过焦点F1、F2,当AC垂直于x轴时,恰好有AF1:AF2=3:1.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设
AF1
1
F1B
AF2
2
F2C

①当A点恰为椭圆短轴的一个端点时,求λ12的值;
②当A点为该椭圆上的一个动点时,试判断是λ12否为定值?若是,请证明;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以抛物线的焦点为顶点,顶点为中心,离心率为2的双曲线方程是         .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过双曲线的左焦点作圆的两条切线,切点分别为,双曲线左顶点为,若,则该双曲线的离心率为(    )
A.B.C.3D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若双曲线的渐近线与方程为的圆相切,则此双曲线的离心率为     

查看答案和解析>>

同步练习册答案