精英家教网 > 高中数学 > 题目详情
17.若定义域均为D的三个函数f(x),g(x),h(x)满足条件:对任意x∈D,点(x,g(x)与点(x,h(x)都关于点(x,f(x)对称,则称h(x)是g(x)关于f(x)的“对称函数”.已知g(x)=$\sqrt{1-{x}^{2}}$,f(x)=2x+b,h(x)是g(x)关于f(x)的“对称函数”,且h(x)≥g(x)恒成立,则实数b的取值范围是[$\sqrt{5}$,+∞).

分析 根据对称函数的定义,结合h(x)≥g(x)恒成立,转化为点到直线的距离d≥1,利用点到直线的距离公式进行求解即可.

解答 解:解:∵x∈D,点(x,g(x)) 与点(x,h(x))都关于点(x,f(x))对称,∴g(x)+h(x)=2f(x),∵h(x)≥g(x)恒成立,
∴2f(x)=g(x)+h(x)≥g(x)+g(x)=2g(x),即f(x)≥g(x)恒成立,
作出g(x)和f(x)的图象,
若h(x)≥g(x)恒成立,
则h(x)在直线f(x)的上方,
即g(x)在直线f(x)的下方,
则直线f(x)的截距b>0,且原点到直线y=2x+b的距离d≥1,
d=$\frac{|b|}{\sqrt{{2}^{2}+1}}=\frac{|b|}{\sqrt{5}}≥1$⇒b≥$\sqrt{5}$或b$≤-\sqrt{5}$(舍去)
即实数b的取值范围是[$\sqrt{5}$,+∞),

点评 本题主要考查不等式恒成立问题,根据对称函数的定义转化为点到直线的距离关系,利用数形结合是解决本题的关键.综合性较强,有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.若函数$y=|{\begin{array}{l}{cosx}&{sinx}\\{sinx}&{cosx}\end{array}}|$的最小正周期为aπ,则实数a的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定义f(x)={x}(其中{x}表示不小于x的最小整数)为“取上整函数”,例如{2.1}=3,{4}=4.以下关于“取上整函数”性质的描述,正确的是(  )
①f(2x)=2f(x);                         
②若f(x1)=f(x2),则x1-x2<1;
③任意x1,x2∈R,f(x1+x2)≤f(x1)+f(x2);
④$f(x)+f(x+\frac{1}{2})=f(2x)$.
A.①②B.①③C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知y=g(x)与y=h(x)都是定义在(-∞,0)∪(0,+∞)上的奇函数,且当x>0时,$g(x)=\left\{\begin{array}{l}{x^2},\;\;0<x≤1\\ g(x-1),\;\;\;x>1.\end{array}\right.$,h(x)=klog2x(x>0),若y=g(x)-h(x)恰有4个零点,则正实数k的取值范围是(  )
A.$[\frac{1}{2},1]$B.$(\frac{1}{2},1]$C.$(\frac{1}{2},{log_3}2]$D.$[\frac{1}{2},{log_3}2]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在二项式(x+$\frac{6}{x}$)6的展开式中,常数项是4320.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,F1,F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,且焦距为2$\sqrt{2}$,动弦AB平行于x轴,且|F1A|+|F1B|=4.
(1)求椭圆C的方程;
(2)若点P是椭圆C上异于点$a>\sqrt{5}$、A,B的任意一点,且直线PA、PB分别与y轴交于点M、N,若MF2、NF2的斜率分别为k1、k2,求证:k1•k2是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.按如图所示的程序框图运算:若输入x=17,则输出的x值是143.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(x)是定义在R上的偶函数,f(1)=1,且对任意x∈R都有f(x+4)=f(x),则f(99)等于(  )
A.-1B.0C.1D.99

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得$\sum_{i=1}^{10}{x_i}=80$,$\sum_{i=1}^{10}{y_i}=20$,$\sum_{i=1}^{10}{{x_i}{y_i}}=184$,$\sum_{i=1}^{10}{x_i^2}=720$.
(Ⅰ)求家庭的月储蓄y对月收入x的线性回归方程$\hat y=\hat bx+\hat a$;
(Ⅱ)判断变量x与y之间是正相关还是负相关;
(Ⅲ)若该居民区某家庭月收入为12千元,预测该家庭的月储蓄.
附:线性回归方程$\hat y=\hat bx+\hat a$中,$\hat b=\frac{{\sum_{i=1}^n{{x_i}y{\;}_i^{\;}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.其中$\overline x$,$\overline y$为样本平均值,线性回归方程也可写为$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$.

查看答案和解析>>

同步练习册答案