精英家教网 > 高中数学 > 题目详情
2.如图,F1,F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,且焦距为2$\sqrt{2}$,动弦AB平行于x轴,且|F1A|+|F1B|=4.
(1)求椭圆C的方程;
(2)若点P是椭圆C上异于点$a>\sqrt{5}$、A,B的任意一点,且直线PA、PB分别与y轴交于点M、N,若MF2、NF2的斜率分别为k1、k2,求证:k1•k2是定值.

分析 (1)由题意焦距求得c,由对称性结合|F1A|+|F1B|=4可得2a,再由隐含条件求得b,则椭圆方程可求;
(2)设B(x0,y0),P(x1,y1),则A(-x0,y0),分别写出PA、PB所在直线方程,求出M、N的坐标,进一步求出MF2、NF2的斜率分别为k1、k2,结合A、B在椭圆上可得k1•k2是定值.

解答 解:(1)∵焦距$2\sqrt{2}$,∴2c=2$\sqrt{2}$,得c=$\sqrt{2}$,
由椭圆的对称性及已知得|F1A|=|F2B|,又∵|F1A|+|F1B|=4,|F1B|+|F2B|=4,
因此2a=4,a=2,于是b=$\sqrt{2}$,因此椭圆方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$;
(2)设B(x0,y0),P(x1,y1),则A(-x0,y0),
直线PA的方程为$y-{y}_{1}=\frac{{y}_{1}-{y}_{0}}{{x}_{1}+{x}_{0}}(x-{x}_{1})$,令x=0,得$y=\frac{{x}_{1}{y}_{0}+{x}_{0}{y}_{1}}{{x}_{1}+{x}_{0}}$,
故M(0,$\frac{{x}_{1}{y}_{0}+{x}_{0}{y}_{1}}{{x}_{1}+{x}_{0}}$);
直线PB的方程为$y-{y}_{1}=\frac{{y}_{1}-{y}_{0}}{{x}_{1}-{x}_{0}}(x-{x}_{1})$,令x=0,得$y=\frac{{x}_{1}{y}_{0}-{x}_{0}{y}_{1}}{{x}_{1}-{x}_{0}}$,
故N(0,$\frac{{x}_{1}{y}_{0}-{x}_{0}{y}_{1}}{{x}_{1}-{x}_{0}}$);
∴${k}_{1}=-\frac{{x}_{1}{y}_{0}+{x}_{0}{y}_{1}}{\sqrt{2}({x}_{1}+{x}_{0})}$,${k}_{2}=-\frac{{x}_{1}{y}_{0}-{x}_{0}{y}_{1}}{\sqrt{2}({x}_{1}-{x}_{0})}$,
因此${k}_{1}•{k}_{2}=\frac{1}{2}\frac{{{x}_{1}}^{2}{{y}_{0}}^{2}-{{x}_{0}}^{2}{{y}_{1}}^{2}}{{{x}_{1}}^{2}-{{x}_{0}}^{2}}$.
∵A,B在椭圆C上,∴${{y}_{1}}^{2}=2-\frac{{{x}_{1}}^{2}}{2},{{y}_{0}}^{2}=2-\frac{{{x}_{0}}^{2}}{2}$,
∴${k}_{1}{k}_{2}=\frac{1}{2}•\frac{{{x}_{1}}^{2}(2-\frac{1}{2}{{x}_{0}}^{2})-{{x}_{0}}^{2}(2-\frac{1}{2}{{x}_{1}}^{2})}{{{x}_{1}}^{2}-{{x}_{0}}^{2}}=1$.

点评 本题考查椭圆标准方程的求法,考查了直线与椭圆位置关系的应用,考查计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.设常数a>0,若${(x+\frac{a}{x})^9}$的二项展开式中x5的系数为144,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=2|x+2|-|x+1|,无穷数列{an}的首项a1=a.
(1)如果an=f(n)(n∈N*),写出数列{an}的通项公式;
(2)如果an=f(an-1)(n∈N*且n≥2),要使得数列{an}是等差数列,求首项a的取值范围;
(3)如果an=f(an-1)(n∈N*且n≥2),求出数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.由n(n≥2)个不同的数构成的数列a1,a2,…an中,若1≤i<j≤n时,aj<ai(即后面的项aj小于前面项ai),则称ai与aj构成一个逆序,一个有穷数列的全部逆序的总数称为该数列的逆序数.如对于数列3,2,1,由于在第一项3后面比3小的项有2个,在第二项2后面比2小的项有1个,在第三项1后面比1小的项没有,因此,数列3,2,1的逆序数为2+1+0=3;同理,等比数列$1,-\frac{1}{2},\frac{1}{4},-\frac{1}{8}$的逆序数为4.
(1)计算数列${a_n}=-2n+19(1≤n≤100,n∈{N^*})$的逆序数;
(2)计算数列${a_n}=\left\{\begin{array}{l}{({\frac{1}{3}})^n},n为奇数\\-\frac{n}{n+1},n为偶数\end{array}\right.$(1≤n≤k,n∈N*)的逆序数;
(3)已知数列a1,a2,…an的逆序数为a,求an,an-1,…a1的逆序数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若定义域均为D的三个函数f(x),g(x),h(x)满足条件:对任意x∈D,点(x,g(x)与点(x,h(x)都关于点(x,f(x)对称,则称h(x)是g(x)关于f(x)的“对称函数”.已知g(x)=$\sqrt{1-{x}^{2}}$,f(x)=2x+b,h(x)是g(x)关于f(x)的“对称函数”,且h(x)≥g(x)恒成立,则实数b的取值范围是[$\sqrt{5}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知向量$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow{b}$=(sinx,sinx),则函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$的最小正周期为π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在正四棱锥P-ABCD中,PA=AB=a,E是棱PC的中点.
(1)求证:PC⊥BD;
(2)求直线BE与PA所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数$f(x)=\left\{{\begin{array}{l}{{2^x}+1,x<2}\\{{x^2}+px,x≥2}\end{array}}\right.$,若f(f(0))=5p,则p的值为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若实数a、b、c满足3a=4b=6c,则下列等式成立的是(  )
A.$\frac{1}{a}+\frac{1}{b}$=$\frac{1}{c}$B.$\frac{2}{a}+\frac{1}{b}$=$\frac{2}{c}$C.$\frac{1}{a}+\frac{2}{b}$=$\frac{1}{c}$D.$\frac{1}{a}+\frac{1}{b}$=$\frac{2}{c}$

查看答案和解析>>

同步练习册答案