精英家教网 > 高中数学 > 题目详情
1.在△ABC中,角A,B,C的对边分别为a,b,c,已知a2+c2-b2=ac,且$\sqrt{2}$b=$\sqrt{3}$c.
(1)求角A的大小;
(2)设函数f(x)=1+cos(2x+B)-cos2x,求函数f(x)的最大值.

分析 (1)由已知利用余弦定理可求cosB=$\frac{1}{2}$,解得B=$\frac{π}{3}$,由$\sqrt{2}$b=$\sqrt{3}$c利用正弦定理可得$\sqrt{2}$sinB=$\sqrt{3}$sinC,可求sinC,结合范围0<C<$\frac{2π}{3}$,可得C,从而可求A的值.
(2)由(1)及三角函数恒等变换的应用化简函数解析式可得f(x)=1+sin(2x+$\frac{7π}{6}$),利用正弦函数的图象和性质即可得解其最大值.

解答 (本小题满分12分)
解:(1)在△ABC中,因为cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{1}{2}$,所以B=$\frac{π}{3}$.     …(2分)
在△ABC中,因为$\sqrt{2}$b=$\sqrt{3}$c,由正弦定理可得$\sqrt{2}$sinB=$\sqrt{3}$sinC,
所以sinC=$\frac{\sqrt{2}}{2}$,0<C<$\frac{2π}{3}$,C=$\frac{π}{4}$,故A=$\frac{2π}{3}-\frac{π}{4}=\frac{5π}{12}$.   …(6分)
(2)由(1)得f(x)=1+cos(2x+$\frac{π}{3}$)-cos2x
=1+$\frac{1}{2}$cos2x-$\frac{\sqrt{3}}{2}$sin2x-cos2x
=1-$\frac{1}{2}$cos2x-$\frac{\sqrt{3}}{2}$sin2x
=1+sin(2x+$\frac{7π}{6}$)   …(10分)
∴f(x)max=2.       …(12分)

点评 本题主要考查了余弦定理,正弦定理,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了转化思想和数形结合思想的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知实数x,y满足不等式组$\left\{\begin{array}{l}{x-y+1≥0}\\{2x+y-7≤0}\\{2x+y-5≥0}\end{array}\right.$,则z=x-2y的最小值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知直线y=$\sqrt{11}$x与椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)相交于A、B两点,若椭圆上存在点P,使得△ABP是等边三角形,则椭圆C的离心率e=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.复数z1=2sin$θ-\sqrt{3}i$,z2=1+(2cosθ)i,i为虚数单位,θ∈[$\frac{π}{3},\frac{π}{2}$];
(1)若z1•z2是实数,求cos2θ的值;
(2)若复数z1、z2对应的向量分别是$\overrightarrow{a}$、$\overrightarrow{b}$,存在θ使等式($λ\overrightarrow{a}-\overrightarrow{b}$)•($\overrightarrow{a}-λ\overrightarrow{b}$)=0成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点为F1,F2,M为短轴端点,且S${\;}_{M{F}_{1}{F}_{2}}$=4,离心率为$\frac{\sqrt{2}}{2}$,O为坐标原点.
(1)求椭圆C的方程;
(2)过点O作两条射线,与椭圆C分别交于A,B两点,且满足|$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|$\overrightarrow{OA}$-$\overrightarrow{OB}$|.证明:点O到直线AB的距离为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知方程ax2+by2=1和ax+by+c=0(其中ab≠0,a≠b,c>0),它们所表示的曲线可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数$f(x)=\left\{\begin{array}{l}{x^2}+1,x≤0\\-\frac{1}{2}x+1,x>0\end{array}\right.$,则f[f(-1)]=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某校数学课外活动小组有高一学生10人,高二学生8人,高三学生7人,每一年级各选1名组长,不同的选法种数为(  )
A.25B.26C.560D.230

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求函数y=3sin($\frac{1}{2}$x+$\frac{π}{3}$),x∈[-2π,2π]的单调增区间、单调减区间.

查看答案和解析>>

同步练习册答案