精英家教网 > 高中数学 > 题目详情
15.已知数列{an}满足an=3an-1+3n(n≥2,n∈N*),首项a1=3.
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn
(3)数列{bn}满足bn=log3$\frac{a_n}{n}$,记数列{$\frac{1}{{{b_n}•{b_{n+1}}}}$}的前n项和为Tn,A是△ABC的内角,若sinAcosA>$\frac{{\sqrt{3}}}{4}{T_n}$对于任意n∈N*恒成立,求角A的取值范围.

分析 (1)通过在${a_n}-3{a_{n-1}}={3^n}$两边同时除以3n,进而可知数列$\left\{{\frac{a_n}{3^n}}\right\}$是首项为$\frac{a_1}{3}=1$、公差为1的等差数列,计算即得结论;
(2)通过(1),利用错位相减法计算即得结论;
(3)通过(1)计算可知${b_n}={log_3}{3^n}=n$,进而利用错位相减法计算可知Tn=1-$\frac{1}{n+1}$,利用Tn<1及二倍角公式化简可知$sin2A≥\frac{{\sqrt{3}}}{2}$,结合A∈(0,π)计算即得结论.

解答 解:(1)数列{an}满足${a_n}=3{a_{n-1}}+{3^n}$(n≥2,n∈N*),
∴${a_n}-3{a_{n-1}}={3^n}$,
又∵3n≠0,
∴$\frac{a_n}{3^n}-\frac{{a{\;}_{n-1}}}{{{3^{n-1}}}}=1$为常数,
∴数列$\left\{{\frac{a_n}{3^n}}\right\}$是首项为$\frac{a_1}{3}=1$、公差为1的等差数列,
∴$\frac{{a}_{n}}{{3}^{n}}$=n,∴${a_n}=n•{3^n}$(n∈N*);
(2)由(1)可知${S_n}=3+2•{3^2}+3•{3^3}+4•{3^4}+…+(n-1)•{3^{n-1}}+n•{3^n}$,
$3{S_n}={3^2}+2•{3^3}+3•{3^4}+4•{3^5}+…+(n-1)•{3^n}+n•{3^{n+1}}$,
两式错位相减,得:-2Sn=3+32+33+…+3n-n•3n+1
=$\frac{3(1-{3}^{n})}{1-3}$-n•3n+1
=-$\frac{3}{2}$-$\frac{2n-1}{2}$•3n+1
∴Sn=$\frac{3}{4}$+$\frac{2n-1}{4}$•3n+1
(3)由(1)可知${a_n}=n•{3^n}$,
∵数列{bn}满足${b_n}={log_3}\frac{a_n}{n}$,
∴${b_n}={log_3}{3^n}=n$,
∴$\frac{1}{{{b_n}{b_{n+1}}}}$=$\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$,
∴${T_n}=(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+(\frac{1}{3}-\frac{1}{4})+…+(\frac{1}{n}-\frac{1}{n+1})$=$1-\frac{1}{n+1}$,
又∵$sinAcosA=\frac{1}{2}sin2A>\frac{{\sqrt{3}}}{4}{T_n}$恒成立,且对于任意n∈N*,Tn<1成立,
∴$\frac{1}{2}sin2A≥\frac{{\sqrt{3}}}{4}$,即$sin2A≥\frac{{\sqrt{3}}}{2}$,
又A∈(0,π),即2A∈(0,2π),
∴$\frac{π}{3}≤2A≤\frac{2π}{3}$,即$A∈[{\frac{π}{6},\frac{π}{3}}]$.

点评 本题考查数列的通项及前n项和,考查错位相减法、裂项相消法,涉及三角函数等基础知识,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知正方体ABCD-A1B1C1D1,点E,F,G分别是线段DC,D1D和D1B上的动点,给出下列结论:
①对于任意给定的点E,存在点F,使得AF⊥A1E;
②对于任意给定的点F,存在点E,使得AF⊥A1E;
③对于任意给定的点G,存在点F,使得AF⊥B1G;
④对于任意给定的点F,存在点G,使得AF⊥B1G.
其中正确结论的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\frac{e^x}{|x|}$,关于x的方程f2(x)-2af(x)+a-1=0(a∈R)有四个相异的实数根,则a的取值范围是(  )
A.(-1,$\frac{{{e^2}-1}}{2e-1}$)B.(1,+∞)C.($\frac{{{e^2}-1}}{2e-1}$,2)D.($\frac{{{e^2}-1}}{2e-1}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设随机变量X~N(2,32),若P(X≤0)=0.1,则P(2≤X<4)=(  )
A.0.1B.0.2C.0.4D.0.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,AB=3,BC=2,$\overrightarrow{AB}•\overrightarrow{BC}=3$,则AC等于(  )
A.$\sqrt{3}$B.$\sqrt{7}$C.$\sqrt{19}$D.$\sqrt{23}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.数列{an}的前n项和记为Sn,若对任意的正整数n,总存在正整数m,使得Sn=am,则称{an}是“G数列”.
(1)若数列{an}的通项公式an=2n,判断{an}是否为“G数列”;
(2)等差数列{an},公差d≠0,a1=2d,求证:{an}是“G数列”;
(3)设Sn与an满足(1-q)Sn+an+1=r,其中a1=2t>0,q≠0.若{an}是“G数列”,求q,r满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.从0、1、3、5、7中取出不同的三个数作系数.
(1)可以组成多少个不同的一元二次方程ax2+bx+c=0;
(2)在所组成的一元二次方程中,有实根的方程有多少个?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知A,B,C,D,E是空间中不同的五点,其中任意四点共面,求证:这五点共面.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在二项式(2$\sqrt{x}$-$\frac{1}{4{x}^{3}}$)7的展开式中,第三项的系数与第五项的二项式系数的比是$\frac{6}{5}$.

查看答案和解析>>

同步练习册答案