精英家教网 > 高中数学 > 题目详情
若函数f(x)=
1
1-x
,则函数f[f(x)]的定义域是
 
考点:函数的定义域及其求法
专题:函数的性质及应用
分析:根据函数成立的条件,建立不等式关系即可得到结论.
解答: 解:函数f(x)的定义域为{x|x≠1},
则要使函数f[f(x)]有意义,则
1-x≠0
f(x)≠1

x≠1
1
1-x
≠1
,得
x≠1
x≠0

即x≠0且x≠1,
即函数的定义域为{x|x≠0且x≠1},
故答案为:{x|x≠0且x≠1}
点评:本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线方程x2=4y,直线y=kx+m交抛物线于A(x1,y1),B(x2,y2)两点,且x1x2=-4,则m的值
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,若不等式组
x+y-2≥0
x-y+2≥0
x≤t
表示的平面区域的面积为1,则实数t的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
夹角为45°,且|
a
|=1,|
b
|=3
2
,则|2
a
-
b
|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题P:函数f(x)=lg(ax2-x+
1
16
a)的定义域为R;命题q:不等式3x-9x<a对一切实数均成立,若命题“p或q”为真命题,且“p且q”为假命题,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O:x2+y2=4与x轴交于A,B,过A,B分别作圆的切线L1,L2;P为圆上异于A,B的动点,过P作圆O的切线分别交L1,L2于D,C两点,直线AC交BD于点M,则M的轨迹方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,公比q=2,则
a3+a4
a1+a2
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

有一块半径为R,圆心角为60°(∠AOB=60°)的扇形木板,现欲按如图所示锯出一矩形(矩形EFGN)桌面,则此桌面的最大面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中是假命题的个数是(  )
①?α,β∈R,使cos(α+β)=cosα+sinβ;
②?a>0,函数f(x)=ln2x+lnx-a有零点
③若
a
b
是两个非零向量,则“|
a
+
b
|=|
a
-
b
|”是“
a
b
”的充要条件;
④若函数f(x)=|2x-1|,则?x1,x2∈[0,1]且x1<x2,使得f(x1)>f(x2).
A、0B、1C、2D、3

查看答案和解析>>

同步练习册答案