8£®Èç¹ûÊýÁÐA£ºa1£¬a2£¬¡­£¬am£¨m¡ÊZ£¬ÇÒm¡Ý3£©£¬Âú×㣺¢Ùai¡ÊZ£¬$-\frac{m}{2}¡Ü{a_i}¡Ü\frac{m}{2}$£¨i=1£¬2£¬¡­£¬m£©£»¢Úa1+a2+¡­+am=1£¬ÄÇô³ÆÊýÁÐAΪ¡°¦¸¡±ÊýÁУ®
£¨¢ñ£©ÒÑÖªÊýÁÐM£º-2£¬1£¬3£¬-1£»ÊýÁÐN£º0£¬1£¬0£¬-1£¬1£®ÊÔÅжÏÊýÁÐM£¬NÊÇ·ñΪ¡°¦¸¡±ÊýÁУ»
£¨¢ò£©ÊÇ·ñ´æÔÚÒ»¸öµÈ²îÊýÁÐÊÇ¡°¦¸¡±ÊýÁУ¿ÇëÖ¤Ã÷ÄãµÄ½áÂÛ£»
£¨¢ó£©Èç¹ûÊýÁÐAÊÇ¡°¦¸¡±ÊýÁУ¬ÇóÖ¤£ºÊýÁÐAÖбض¨´æÔÚÈô¸ÉÏîÖ®ºÍΪ0£®

·ÖÎö £¨¢ñ£©¸ù¾Ý¶¨ÒåÖ±½ÓÅжϼ´¿ÉµÃ½â£®
£¨¢ò£©¼ÙÉè´æÔڵȲîÊýÁÐÊÇ¡°¦¸¡±ÊýÁУ¬ÓÉa1+a2+¡­+am=1£¬µÃa1+am=$\frac{2}{m}$∉Z£¬Óëai¡ÊZì¶Ü£¬´Ó¶ø¿ÉÖ¤²»´æÔڵȲîÊýÁÐΪ¡°¦¸¡±ÊýÁУ®
£¨¢ó£©½«ÊýÁÐA°´ÒÔÏ·½·¨ÖØÐÂÅÅÁУºÉèSnÎªÖØÐÂÅÅÁкóËùµÃÊýÁеÄǰnÏîºÍ£¨n¡ÊZÇÒ1¡Ün¡Üm£©£¬ÈÎÈ¡´óÓÚ0µÄÒ»Ïî×÷ΪµÚÒ»ÏÔòÂú×ã-$\frac{m}{2}$+1¡ÜS1¡Ü$\frac{m}{2}$£¬È»ºóÀûÓ÷´Ö¤·¨£¬Ö¤Ã÷¼´¿É£®

½â´ð £¨±¾Ð¡Ìâ¹²13·Ö£©
½â£º£¨¢ñ£©ÊýÁÐM²»ÊÇ¡°¦¸¡±ÊýÁУ»ÊýÁÐNÊÇ¡°¦¸¡±ÊýÁУ®               ¡­£¨2·Ö£©
£¨¢ò£©²»´æÔÚÒ»¸öµÈ²îÊýÁÐÊÇ¡°¦¸¡±ÊýÁУ®
Ö¤Ã÷£º¼ÙÉè´æÔڵȲîÊýÁÐÊÇ¡°¦¸¡±ÊýÁУ¬
ÔòÓÉa1+a2+¡­+am=1  µÃa1+am=$\frac{2}{m}$∉Z£¬Óëai¡ÊZì¶Ü£¬
ËùÒÔ¼ÙÉè²»³ÉÁ¢£¬¼´²»´æÔڵȲîÊýÁÐΪ¡°¦¸¡±ÊýÁУ®            ¡­£¨7·Ö£©
£¨¢ó£©½«ÊýÁÐA°´ÒÔÏ·½·¨ÖØÐÂÅÅÁУº
ÉèSnÎªÖØÐÂÅÅÁкóËùµÃÊýÁеÄǰnÏîºÍ£¨n¡ÊZÇÒ1¡Ün¡Üm£©£¬
ÈÎÈ¡´óÓÚ0µÄÒ»Ïî×÷ΪµÚÒ»ÏÔòÂú×ã-$\frac{m}{2}$+1¡ÜS1¡Ü$\frac{m}{2}$£¬
¼ÙÉèµ±2¡Ün¡Ümʱ£¬$-\frac{m}{2}+1¡Ü{S_{n-1}}¡Ü\frac{m}{2}$
ÈôSn-1=0£¬ÔòÈÎÈ¡´óÓÚ0µÄÒ»Ïî×÷ΪµÚnÏ¿ÉÒÔ±£Ö¤-$\frac{m}{2}$+1¡ÜSn¡Ü$\frac{m}{2}$£¬
ÈôSn-1¡Ù0£¬ÔòʣϵÄÏî±ØÓÐ0»òÓëSn-1ÒìºÅµÄÒ»Ï·ñÔò×ܺͲ»ÊÇ1£¬
ËùÒÔÈ¡0»òÓëSn-1ÒìºÅµÄÒ»Ïî×÷ΪµÚnÏ¿ÉÒÔ±£Ö¤-$\frac{m}{2}$+1¡ÜSn¡Ü$\frac{m}{2}$£®
Èç¹û°´ÉÏÊöÅÅÁкó´æÔÚSn=0³ÉÁ¢£¬ÄÇôÃüÌâµÃÖ¤£»
·ñÔòS1£¬S2£¬¡­£¬SmÕâm¸öÕûÊýÖ»ÄÜÈ¡ÖµÇø¼ä[-$\frac{m}{2}$+1£¬$\frac{m}{2}$]ÄڵķÇ0ÕûÊý£¬
ÒòÎªÇø¼ä[-$\frac{m}{2}$+1£¬$\frac{m}{2}$]ÄڵķÇ0ÕûÊýÖÁ¶àm-1¸ö£¬ËùÒԱشæÔÚSi=Sj£¨1¡Üi£¼j¡Üm£©£¬
ÄÇô´ÓµÚi+1Ïîµ½µÚjÏîÖ®ºÍΪSi-Sj=0£¬ÃüÌâµÃÖ¤£®
×ÛÉÏËùÊö£¬ÊýÁÐAÖбشæÔÚÈô¸ÉÏîÖ®ºÍΪ0£®              ¡­£¨13·Ö£©

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËж¨ÒåºÍÊýÁеÄÓ¦Ó㬽â´ðж¨ÒåµÄÊÔÌâµÄ¹Ø¼üÊǰÑÌâÄ¿Öе͍Òåת»¯ÒѾ­Ñ§¹ýµÄ֪ʶ½øÐнâ¾ö£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Èôx£¾0£¬Ôòº¯Êýf£¨x£©=x+$\frac{32}{{x}^{2}}$µÄ×îСֵΪ6£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖªtan¦Á=-$\frac{1}{2}$£¬Ôò$\frac{2sin¦Ácos¦Á}{si{n}^{2}¦Á-co{s}^{2}¦Á}$=-$\frac{4}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Èôij¼¸ºÎÌåµÄÈýÊÓͼ£¨µ¥Î»£ºcm£©ÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ£¨¡¡¡¡£©
A£®6cm3B£®12cm3C£®18cm3D£®36cm3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®Ä³²ÍÌüµÄÔ­ÁÏ·ÑÖ§³öxÓëÏúÊÛ¶îy£¨µ¥Î»£ºÍòÔª£©Ö®¼äÓÐÈçÏÂÊý¾Ý£¬¸ù¾Ý±íÖÐÌṩµÄÈ«²¿Êý¾Ý£¬ÓÃ×îС¶þ³Ë·¨µÃ³öyÓëxµÄÏßÐԻع鷽³ÌΪ$\widehat{y}$=8.5x+7.5£¬Ôò±íÖеÄmµÄֵΪ£¨¡¡¡¡£©
x24568
y2535m5575
A£®50B£®55C£®60D£®65

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªº¯Êýg£¨x£©=mex-nexx3£¬h£¨x£©=$\frac{lnx}{x}$£¬f£¨x£©=g£¨x£©-h£¨x£©£¬ÇÒº¯Êýf£¨x£©Ôڵ㣨1£¬e£©´¦µÄÇÐÏßÓëÖ±Ïßx-£¨2e+1£©y-3=0´¹Ö±£®
£¨1£©Çóm£¬nµÄÖµ£»
£¨2£©µ±x¡Ê[-2£¬0]ʱ£¬Òªg£¨x£©£¾kºã³ÉÁ¢£¬ÇókµÄ·¶Î§£»
£¨3£©Ö¤Ã÷£ºf£¨x£©ÔÚÇø¼ä£¨1£¬2£©ÉÏ´æÔÚΨһÁãµã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªsinx=-0.4632£¬Çó0¡ã¡«360¡ã£¨»ò0¡«2¦Ð£©·¶Î§ÄڵĽÇx£¨¾«È·µ½0.01¡ã£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ£¬ÔÚÕý·½ÌåABCD-A1B1C1D1ÖУ¬E¡¢F·Ö±ðÊÇAB1¡¢BC1µÄÖе㣬
£¨1£©ÈôMΪB1BµÄÖе㣬֤Ã÷Æ½ÃæEMF¡ÎÆ½ÃæABCD£»
£¨2£©ÇóÒìÃæÖ±ÏßEFÓëA1DËù³ÉµÄ½Ç£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªÇúÏßCÔÚ¾ØÕóM=$£¨\begin{array}{l}{1}&{0}\\{2}&{3}\end{array}£©$Ëù¶ÔÓ¦µÄ±ä»»Ïµõ½ÇúÏßC¡ä£ºx2+y2=1£®
£¨¢ñ£©ÇóÇúÏßCµÄ·½³Ì£»
£¨¢ò£©ÈôÇúÏßC¡äÔÚ¾ØÕóNËù¶ÔÓ¦µÄ±ä»»ÏÂÓֵõ½ÇúÏßC£¬Çó¾ØÕóN£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸