精英家教网 > 高中数学 > 题目详情
求y=x-
x
4
的值域.
考点:函数的值域
专题:函数的性质及应用
分析:直接利用函数的定义域求函数的值域,利用函数的单调性求出结果.
解答: 解:已知y=x-
x
4
=
3x
4

由于x∈R
且y=
3x
4
在x∈R为单调递增函数.
所以y∈R
即函数的值域为:y∈R
点评:本题考查的知识要点:函数的单调性的应用,属于基础题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知cosα+cosβ=
1
2
,sinα+sinβ=
1
3
,求cos(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(cosx.-
3
),
n
=(sin(x+
π
3
),cos2x-
1
4
),函数f(x)=
m
n

(1)求f(x)的最小正周期;
(2)△ABC的内角A,B,C的对边分别为a,b,c,已知锐角A满足f(
A
2
+
π
6
)=
10
20
,且3acosC=2ccosA.求B.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2,3),
b
=(-2,x),若
a
b
方向上的投影等于-
5
5
,则实数x的值为(  )
A、
19
11
B、1
C、1或
19
11
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

以下判断正确的是(  )
A、命题“负数的平方是正数”不是全称命题
B、命题“?x∈N,x3>x2”的否定是“?x∈N,x3<x2
C、“a=1”是函数f(x)=cos2ax-sin2ax的最小正周期为π的必要不充分条件
D、“b=0”是“函数f(x)=ax2+bx+c是偶函数”的充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

一个四面体如图,若该四面体的正视图(主视图)、侧视图(左视图)和俯视图都是直角边长为1的等腰直角三角形,则它的体积V=(  )
A、
1
2
B、
1
3
C、
1
6
D、
1
12

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+3log2(x+1)+m(m为常数),则f(-1)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)与直线y=
3
x无交点,则
b
a
的取值范围是(  )
A、(0,
3
B、(0,
3
]
C、(
3
,+∞)
D、[
3
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinθ+cosθ=
3
+1
2
,求
sinθ
1-
1
tanθ
+
cosθ
1-tanθ
的值.

查看答案和解析>>

同步练习册答案