已知椭圆()的右焦点为,离心率为.
(Ⅰ)若,求椭圆的方程;
(Ⅱ)设直线与椭圆相交于,两点,分别为线段的中点. 若坐标原点在以为直径的圆上,且,求的取值范围.
(Ⅰ);(Ⅱ)
解析试题分析:(Ⅰ)由已知椭圆的半焦距,又,根据离心率的定义得,则,所以,从而得出所求椭圆的方程为.
(2)根据题意可设点、的坐标分别为、,联立直线方程与椭圆方程,消去得,则,,因为原点在圆上,所以,根据三角形中位线性质可知四边形为矩形,所以,又,所以,,因此,即,从而可整理得,又因为,所以,即,从而,所以,因此,解得.(如图所示)
试题解析:(Ⅰ)由题意得,得. 2分
结合,解得,. 3分
所以,椭圆的方程为. 4分
(Ⅱ)由 得.
设.
所以, 6分
依题意,,
易知,四边形为平行四边形,
所以, 7分
因为,,
所以. 8分
即 , 9分
将其整理为 . 10分
因为,所以,. 11分
所以,即. 13分
考点:1.椭圆方程;2.直线与椭圆;3.向量.
科目:高中数学 来源: 题型:解答题
已知动直线与椭圆交于、两不同点,且△的面积=,其中为坐标原点.
(1)证明和均为定值;
(2)设线段的中点为,求的最大值;
(3)椭圆上是否存在点,使得?若存在,判断△的形状;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,已知分别是椭圆的左、右焦点,椭圆与抛物线有一个公共的焦点,且过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点是椭圆在第一象限上的任一点,连接,过点作斜率为的直线,使得与椭圆有且只有一个公共点,设直线的斜率分别为,,试证明为定值,并求出这个定值;
(III)在第(Ⅱ)问的条件下,作,设交于点,
证明:当点在椭圆上移动时,点在某定直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知两点,直线AM、BM相交于点M,且这两条直线的斜率之积为.
(Ⅰ)求点M的轨迹方程;
(Ⅱ)记点M的轨迹为曲线C,曲线C上在第一象限的点P的横坐标为1,直线PE、PF与圆()相切于点E、F,又PE、PF与曲线C的另一交点分别为Q、R.
求△OQR的面积的最大值(其中点O为坐标原点).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆经过点,离心率为.
(1)求椭圆C的方程:
(2)过点Q(1,0)的直线l与椭圆C相交于A、B两点,点P(4,3),记直线PA,PB的斜率分别为k1,k2,当k1·k2最大时,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
给定椭圆,称圆心在坐标原点O,半径为的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是.
(1)若椭圆C上一动点满足,求椭圆C及其“伴随圆”的方程;
(2)在(1)的条件下,过点作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为,求P点的坐标;
(3)已知,是否存在a,b,使椭圆C的“伴随圆”上的点到过两点的直线的最短距离.若存在,求出a,b的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:的离心率与等轴双曲线的离心率互为倒数,直线与以原点为圆心,以椭圆C的短半轴长为半径的圆相切。
(Ⅰ)求椭圆C的方程;
(Ⅱ)设M是椭圆的上顶点,过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=2,证明:直线AB过定点(―1,―1)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知的两顶点坐标,,圆是的内切圆,在边,,上的切点分别为,(从圆外一点到圆的两条切线段长相等),动点的轨迹为曲线.
(1)求曲线的方程;
(2)设直线与曲线的另一交点为,当点在以线段为直径的圆上时,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com