| A. | (1,+∞) | B. | (-∞,-1) | C. | (-1,1) | D. | (-∞,-1)∪(1,+∞) |
分析 由题意设g(x)=(x+1)f(x),求出g′(x)后由条件判断出符号,由导数与函数单调性的关系判断出g(x)在(-∞,-1)上递增,由条件和图象平移判断出:函数f(x-1)的图象关于点(0,0)中心对称,由奇函数的图象可得:函数f(x-1)是奇函数,令h(x)=g(x-1)=xf(x-1),判断出h(x)的奇偶性和单调性,再等价转化不等式,求出不等式的解集.
解答 解:由题意设g(x)=(x+1)f(x),
则g′(x)=f(x)+(x+1)f′(x),
∵当x<-1时,(x+1)[f(x)+(x+1)f′(x)]<0,
∴当x<-1时,f(x)+(x+1)f′(x)>0,
则g(x)在(-∞,-1)上递增,
∵函数f(x)的定义域为R,其图象关于点(-1,0)中心对称,
∴函数f(x-1)的图象关于点(0,0)中心对称,
则函数f(x-1)是奇函数,
令h(x)=g(x-1)=xf(x-1),
∴h(x)是R上的偶函数,且在(-∞,0)递增,
由偶函数的性质得:函数h(x)在(0,+∞)上递减,
∵h(1)=f(0),∴不等式xf(x-1)>f(0)化为:h(x)>h(1),
即|x|<1,解得-1<x<1,
∴不等式的解集是(-1,1),
故选C.
点评 本题考查导数与单调性的关系,偶函数的定义以及性质,函数图象的平移变换,以及函数单调性的应用,考查转化思想,构造法,化简、变形能力.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 8$\sqrt{2}$ | C. | 16 | D. | 16$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (x-1)2+(y-$\sqrt{2}$)2=2 | B. | (x-1)2+(y-2)2=2 | C. | (x+1)2+(y+$\sqrt{2}$)2=4 | D. | (x-1)2+(y-$\sqrt{2}$)2=4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 车牌尾号 | 0和5 | 1和6 | 2和7 | 3和8 | 4和9 |
| 限行日 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4n | B. | 2n | C. | n | D. | 0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com