精英家教网 > 高中数学 > 题目详情
11.如图所示,已知在四棱锥P-ABCD中,底面ABCD为直角梯形,其中CD∥AB,AD⊥AB,侧棱PA⊥底面ABCD,且AD=DC=PA=$\frac{1}{2}$AB=1.
(Ⅰ)求证:BC⊥平面PAC;
(Ⅱ)设点M为PB中点,求四面体M-PAC的体积.

分析 (I)过C作CE⊥AB,垂足为E,则四边形ADCE是正方形.利用勾股定理求出AC,BC,得出AC⊥BC,由PA⊥平面ABCD得AP⊥BC,故而BC⊥平面PAC;
(Ⅱ)以PAM为棱锥的底面,则CE为棱锥的高,代入棱锥的体积公式计算即可.

解答 证明:(Ⅰ)过C作CE⊥AB,垂足为E,
∵AD⊥AB,CD∥AB,AD=DC,
∴四边形ADCE是正方形.
∴BE=AE=CE=1.
∴$AC=\sqrt{2}$,$BC=\sqrt{2}$.
∵AB=2,
∴AC2+BC2=AB2
∴AC⊥BC.
又∵PA⊥底面ABCD,BC?平面ABCD,
∴PA⊥BC,
又AC?平面PAC,AP?平面PAC,AC∩PA=A,
∴BC⊥平面PAC.
解:(Ⅱ)∵PA⊥底面ABCD,CE?平面ABCD,
∴PA⊥CE,
又∵CE⊥AB,AB?平面PAB,AP?平面PAB,PA∩AB=A,
∴CE⊥面PAB,
∵PA⊥底面ABCD,
∴PA⊥AB,
又M为PB中点,
∴S△PAM=$\frac{1}{2}{S}_{△PAB}$=$\frac{1}{2}×\frac{1}{2}PA•AB$=$\frac{1}{4}×1×2=\frac{1}{2}$,
∴VM-PAC=VC-PAM=$\frac{1}{3}{S}_{△PAM}•CE$=$\frac{1}{3}×\frac{1}{2}×1=\frac{1}{6}$.

点评 本题考查了线面垂直的判定,棱锥的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.如图是计算1+$\frac{1}{3}$+$\frac{1}{5}$+…+$\frac{1}{41}$的值的一个程序框图,其中判断框内应填的是(  )
A.i≥20B.i≤20C.i>21D.i<21

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,四棱锥P-ABCD的底面是边长为1的正方形,侧棱PA⊥底面ABCD,且PA=2,E是侧棱PA上的动点.
(1)若E是PA的中点,求证PC∥平面BDE;
(2)是否不论点E在侧棱PA的任何位置,都有BD⊥CE?证明你的结论
(3)在(1)的条件下求四面体D-BEC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知正四棱锥底面正方形的边长为4,高与斜高的夹角为30°,求正四棱锥的侧面积、全面积、体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,四边形ABCD为菱形,ACFE为平行四边形,且平面ACFE⊥平面ABCD,设BD与AC相交于点G,H为FG的中点.
(1)证明:BD⊥CH;
(2)若$AB=BD=2,AE=\sqrt{3},CH=\frac{{\sqrt{3}}}{2}$;
①求三棱锥F-BDC的体积.
②求二面角B-DF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知抛物线C:y2=2px(p>0)上的一点M的横坐标为3,焦点为F,且|MF|=4.直线l:y=2x-4与抛物线C交于A,B两点.
(Ⅰ)求抛物线C的方程;
(Ⅱ)若直线l1∥l,且直线l1与抛物线C相切于点P,求直线l1的方程及△ABP的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.抛物线x2=-8y的焦点坐标为(0,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,直线l:y=x+b与抛物线C:x2=4y相切于点A.
(1)求实数b的值;
(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知a,b,c,d∈(0,+∞),求证:$\frac{ad+bc}{bd}$+$\frac{bc+ad}{ac}$≥4.

查看答案和解析>>

同步练习册答案